Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
CPT Pharmacometrics Syst Pharmacol ; 13(6): 994-1005, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532525

RESUMO

Trastuzumab deruxtecan (T-DXd; DS-8201; ENHERTU®) is a human epithelial growth factor receptor 2 (HER2)-directed antibody drug conjugate (ADC) with demonstrated antitumor activity against a range of tumor types. Aiming to understand the relationship between antigen expression and downstream efficacy outcomes, T-DXd was administered in tumor-bearing mice carrying NCI-N87, Capan-1, JIMT-1, and MDA-MB-468 xenografts, characterized by varying HER2 levels. Plasma pharmacokinetics (PK) of total antibody, T-DXd, and released DXd and tumor concentrations of released DXd were evaluated, in addition to monitoring γΗ2AX and pRAD50 pharmacodynamic (PD) response. A positive relationship was observed between released DXd concentrations in tumor and HER2 expression, with NCI-N87 xenografts characterized by the highest exposures compared to the remaining cell lines. γΗ2AX and pRAD50 demonstrated a sustained increase over several days occurring with a time delay relative to tumoral-released DXd concentrations. In vitro investigations of cell-based DXd disposition facilitated the characterization of DXd kinetics across tumor cells. These outputs were incorporated into a mechanistic mathematical model, utilized to describe PK/PD trends. The model captured plasma PK across dosing arms as well as tumor PK in NCI-N87, Capan-1, and MDA-MB-468 models; tumor concentrations in JIMT-1 xenografts required additional parameter adjustments reflective of complex receptor dynamics. γΗ2AX longitudinal trends were well characterized via a unified PD model implemented across xenografts demonstrating the robustness of measured PD trends. This work supports the application of a mechanistic model as a quantitative tool, reliably projecting tumor payload concentrations upon T-DXd administration, as the first step towards preclinical-to-clinical translation.


Assuntos
Imunoconjugados , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Trastuzumab/farmacocinética , Trastuzumab/farmacologia , Receptor ErbB-2/metabolismo , Camundongos , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Linhagem Celular Tumoral , Feminino , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/farmacologia , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/administração & dosagem , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa