Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 297(1): 100898, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34157286

RESUMO

Post-translational modifications to tubulin are important for many microtubule-based functions inside cells. It was recently shown that methylation of tubulin by the histone methyltransferase SETD2 occurs on mitotic spindle microtubules during cell division, with its absence resulting in mitotic defects. However, the catalytic mechanism of methyl addition to tubulin is unclear. We used a truncated version of human wild type SETD2 (tSETD2) containing the catalytic SET and C-terminal Set2-Rpb1-interacting (SRI) domains to investigate the biochemical mechanism of tubulin methylation. We found that recombinant tSETD2 had a higher activity toward tubulin dimers than polymerized microtubules. Using recombinant single-isotype tubulin, we demonstrated that methylation was restricted to lysine 40 of α-tubulin. We then introduced pathogenic mutations into tSETD2 to probe the recognition of histone and tubulin substrates. A mutation in the catalytic domain (R1625C) allowed tSETD2 to bind to tubulin but not methylate it, whereas a mutation in the SRI domain (R2510H) caused loss of both tubulin binding and methylation. Further investigation of the role of the SRI domain in substrate binding found that mutations within this region had differential effects on the ability of tSETD2 to bind to tubulin versus the binding partner RNA polymerase II for methylating histones in vivo, suggesting distinct mechanisms for tubulin and histone methylation by SETD2. Finally, we found that substrate recognition also requires the negatively charged C-terminal tail of α-tubulin. Together, this study provides a framework for understanding how SETD2 serves as a dual methyltransferase for both histone and tubulin methylation.


Assuntos
Domínio Catalítico , Histona-Lisina N-Metiltransferase/química , Tubulina (Proteína)/metabolismo , Animais , Células COS , Chlorocebus aethiops , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional
2.
Brain ; 144(8): 2527-2540, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014281

RESUMO

Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.


Assuntos
Ansiedade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Fenótipo
3.
Structure ; 28(8): 874-878, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755569

RESUMO

During global pandemics, the spread of information needs to be faster than the spread of the virus in order to ensure the health and safety of human populations worldwide. In our current crisis, the demand for SARS-CoV-2 drugs and vaccines highlights the importance of biological targets and their three-dimensional shape. In particular, structural biology as a field was poised to quickly respond to crises due to previous experience and expertise and because of its early adoption of open access practices.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Proteínas Virais/química , COVID-19 , Proteases 3C de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Cisteína Endopeptidases/química , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Biologia Molecular , Conformação Proteica , RNA Polimerase Dependente de RNA/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química
4.
IUCrJ ; 7(Pt 6): 1179-1187, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209328

RESUMO

Recent advances in single-particle cryo-electron microscopy (cryo-EM) data collection utilize beam-image shift to improve throughput. Despite implementation on 300 keV cryo-EM instruments, it remains unknown how well beam-image-shift data collection affects data quality on 200 keV instruments and the extent to which aberrations can be computationally corrected. To test this, a cryo-EM data set for aldolase was collected at 200 keV using beam-image shift and analyzed. This analysis shows that the instrument beam tilt and particle motion initially limited the resolution to 4.9 Å. After particle polishing and iterative rounds of aberration correction in RELION, a 2.8 Šresolution structure could be obtained. This analysis demonstrates that software correction of microscope aberrations can provide a significant improvement in resolution at 200 keV.

5.
Sci Adv ; 6(40)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33008892

RESUMO

The methyltransferase SET domain-containing 2 (SETD2) was originally identified as Huntingtin (HTT) yeast partner B. However, a SETD2 function associated with the HTT scaffolding protein has not been elucidated, and no linkage between HTT and methylation has yet been uncovered. Here, we show that SETD2 is an actin methyltransferase that trimethylates lysine-68 (ActK68me3) in cells via its interaction with HTT and the actin-binding adapter HIP1R. ActK68me3 localizes primarily to the insoluble F-actin cytoskeleton in cells and regulates actin polymerization/depolymerization dynamics. Disruption of the SETD2-HTT-HIP1R axis inhibits actin methylation, causes defects in actin polymerization, and impairs cell migration. Together, these data identify SETD2 as a previously unknown HTT effector regulating methylation and polymerization of actin filaments and provide new avenues for understanding how defects in SETD2 and HTT drive disease via aberrant cytoskeletal methylation.


Assuntos
Actinas , Proteínas de Ligação ao GTP/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Lisina , Actinas/metabolismo , Citoesqueleto/metabolismo , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional
6.
Infect Immun ; 77(5): 1746-56, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19223475

RESUMO

Many microbial pathogens alter expression and/or posttranslational modifications of their surface proteins in response to dynamics within their host microenvironments to retain optimal interactions with their host cells and/or to evade the humoral immune response. Anaplasma phagocytophilum is an intragranulocytic bacterium that utilizes sialyl Lewis x (sLe(x))-modified P-selectin glycoprotein ligand 1 as a receptor for infecting myeloid cells. Bacterial populations that do not rely on this receptor can be obtained through cultivation in sLe(x)-defective cell lines. A. phagocytophilum major surface protein 2 [Msp2(P44)] is encoded by members of a paralogous gene family and is speculated to play roles in host adaptation. We assessed the complement of Msp2(P44) paralogs expressed by A. phagocytophilum during infection of sLe(x)-competent HL-60 cells and two HL-60 cell lines defective for sLe(x) expression. Multiple Msp2(P44) and N-terminally truncated 25- to 27-kDa isoforms having various isoelectric points and electrophoretic mobilities were expressed in each cell line. The complement of expressed msp2(p44) paralogs and the glycosyl residues modifying Msp2(P44) varied considerably among bacterial populations recovered from sLe(x)-competent and -deficient host cells. Thus, loss of host cell sLe(x) expression coincided with both differential expression and glycosylation of A. phagocytophilum Msp2(P44). This reinforces the hypothesis that this bacterium is able to generate a large variety of surface-exposed molecules that could provide great antigenic diversity and result in multiple binding properties.


Assuntos
Anaplasma phagocytophilum/fisiologia , Proteínas da Membrana Bacteriana Externa/biossíntese , Perfilação da Expressão Gênica , Neutrófilos/microbiologia , Oligossacarídeos/deficiência , Anaplasma phagocytophilum/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Linhagem Celular , Eletroforese em Gel Bidimensional , Glicosilação , Humanos , Proteoma/análise , Antígeno Sialil Lewis X
7.
Cell Microbiol ; 10(9): 1827-38, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18485118

RESUMO

Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause granulocytic anaplasmosis in humans and mammals. P-selectin glycoprotein ligand-1 (PSGL-1) and the tetrasaccharide sialyl Lewis x (sLe(x)), which caps the PSGL-1 N-terminus, are confirmed A. phagocytophilum receptors. A. phagocytophilum is capable of sLe(x)-modified PSGL-1-dependent and -independent infection. PSGL-1 N-terminus-mediated entry is dependent on spleen tyrosine kinase (Syk). Here, we determined that PSGL-1-independent entry does not alter bacterial replication and investigated whether it involves Syk using NCH-1A2, an enriched subpopulation of A. phagocytophilum NCH-1 obtained through cultivation in a sLe(x)-deficient HL-60 cell line, HL-60 A2. Pharmacological inhibition of Syk nearly abolishes NCH-1 infection, but does not alter NCH-1A2 invasion and only marginally reduces NCH-1A2 propagation. This phenomenon was confirmed by a competitive infection assay using PSGL-1-dependent and -independent A. phagocytophilum organisms transformed to express mCherry or green fluorescent protein respectively. We also assayed for delivery and tyrosine phosphorylation of the A. phagocytophilum effector, AnkA, following NCH-1or NCH-1A2 incubation with HL-60 or HL-60 A2 cells in the presence of PSGL-1 blocking antibody. PSGL-1 N-terminus recognition promotes optimal AnkA delivery while binding to sLe(x) or the unknown receptor is comparably less important for this process.


Assuntos
Anaplasma phagocytophilum/patogenicidade , Proteínas de Bactérias/metabolismo , Ehrlichiose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/metabolismo , Aderência Bacteriana , Antígeno CA-19-9 , Células HL-60 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Oligossacarídeos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinase Syk , Tirosina/metabolismo
8.
Curr Biol ; 29(7): 1137-1148.e4, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905605

RESUMO

The trafficking of components within cilia, called intraflagellar transport (IFT), is powered by kinesin-2 and dynein-2 motors. Loss of function in any subunit of the heterotrimeric KIF3A/KIF3B/KAP kinesin-2 motor prevents ciliogenesis in mammalian cells and has hindered an understanding of how kinesin-2 motors function in cilium assembly and IFT. We used a chemical-genetic approach to generate an inhibitable KIF3A/KIF3B/KAP kinesin-2 motor (i3A/i3B) that is capable of rescuing wild-type (WT) motor function for cilium assembly and Hedgehog signaling in Kif3a/Kif3b double-knockout cells. We demonstrate that KIF3A/KIF3B function is required not just for cilium assembly but also for cilium maintenance, as inhibition of i3A/i3B blocks IFT within 2 min and leads to a complete loss of primary cilia within 8 h. In contrast, inhibition of dynein-2 has no effect on cilium maintenance within the same time frame. The kinetics of cilia loss indicate that two processes contribute to ciliary disassembly in response to cessation of anterograde IFT: a slow shortening that is steady over time and a rapid deciliation that occurs with stochastic onset. We also demonstrate that the kinesin-2 family members KIF3A/KIF3C and KIF17 cannot rescue ciliogenesis in Kif3a/Kif3b double-knockout cells or delay the loss of assembled cilia upon i3A/i3B inhibition. These results demonstrate that KIF3A/KIF3B/KAP is the sole and essential motor for cilium assembly and maintenance in mammalian cells. These findings highlight differences in how kinesin-2 motors were adapted for cilium assembly and IFT function across species.


Assuntos
Cílios/metabolismo , Flagelos/metabolismo , Cinesinas/metabolismo , Sequência de Aminoácidos , Animais , Camundongos , Células NIH 3T3 , Transporte Proteico
9.
Infect Immun ; 76(5): 2090-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285495

RESUMO

Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis. MSP2(P44), the bacterium's major surface protein, is encoded by a paralogous gene family and has been implicated in a variety of pathobiological processes, including antigenic variation, host adaptation, adhesion, porin activity, and structural integrity. The consensus among several studies performed at the DNA and RNA levels is that a heterogeneous mix of a limited number of msp2(p44) transcripts is expressed by A. phagocytophilum during in vitro cultivation. Such analyses have yet to be extended to the protein level. In this study, we used proteomic and molecular approaches to determine that MSP2(P44)-18 is the predominant if not the only paralog expressed and is modified into multiple 42- to 44-kDa isoforms by A. phagocytophilum strain HGE1 during infection of HL-60 cells. The msp2(p44) expression profile was homogeneous for msp2(p44)-18. Thus, MSP2(P44)-18 may have a fitness advantage in HL-60 cell culture in the absence of selective immune pressure. Several novel 22- to 27-kDa MSP2 isoforms lacking most of the N-terminal conserved region were also identified. A. phagocytophilum MSP2(P44) orthologs expressed by other pathogens in the family Anaplasmataceae are glycosylated. Gas chromatography revealed that recombinant MSP2(P44)-18 is modified by glucose, galactose, xylose, mannose, and trace amounts of other glycosyl residues. These data are the first to confirm differential modification of any A. phagocytophilum MSP2(P44) paralog and the first to provide evidence for expression of truncated versions of such proteins.


Assuntos
Anaplasma phagocytophilum/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Células Mieloides/microbiologia , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Western Blotting , Carboidratos/análise , Linhagem Celular , Cromatografia Gasosa , Eletroforese em Gel Bidimensional , Glicosilação , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/química
10.
F1000Res ; 6: 1151, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29188015

RESUMO

Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments.

11.
Cell Microbiol ; 8(12): 1972-84, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16869829

RESUMO

Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that colonizes neutrophils and neutrophil precursors. The granulocytotropic bacterium uses multiple adhesins that cooperatively bind to the N-terminal region of P-selectin glycoprotein ligand-1 (PSGL-1) and to sialyl Lewis x (sLe(x)) expressed on myeloid cell surfaces. Recognition of sLe(x) occurs through interactions with alpha2,3-sialic acid and alpha1,3-fucose. It is unknown whether other bacteria-host cell interactions are involved. In this study, we have enriched for A. phagocytophilum organisms that do not rely on sialic acid for cellular adhesion and entry by maintaining strain NCH-1 in HL-60 cells that are severely undersialylated. The selected bacteria, termed NCH-1A, also exhibit lessened dependencies on PSGL-1 and alpha1,3-fucose. Optimal adhesion and invasion by NCH-1A require interactions with the known determinants (sialic acid, PSGL-1 and alpha1,3-fucose), but none of them is absolutely necessary. NCH-1A binding to sLe(x)-modified PSGL-1 requires recognition of the known determinants in the same manners as other A. phagocytophilum strains. These data suggest that A. phagocytophilum expresses a separate adhesin from those targeting sialic acid, alpha1,3-fucose and the N-terminal region of PSGL-1. We propose that NCH-1A upregulates expression of this adhesin.


Assuntos
Adesinas Bacterianas/metabolismo , Anaplasma phagocytophilum/metabolismo , Aderência Bacteriana , Adesinas Bacterianas/química , Anaplasma phagocytophilum/patogenicidade , Fucose/metabolismo , Células HL-60 , Humanos , Glicoproteínas de Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa