Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 460, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208717

RESUMO

BACKGROUND: Double reading (DR) in screening mammography increases cancer detection and lowers recall rates, but has sustainability challenges due to workforce shortages. Artificial intelligence (AI) as an independent reader (IR) in DR may provide a cost-effective solution with the potential to improve screening performance. Evidence for AI to generalise across different patient populations, screening programmes and equipment vendors, however, is still lacking. METHODS: This retrospective study simulated DR with AI as an IR, using data representative of real-world deployments (275,900 cases, 177,882 participants) from four mammography equipment vendors, seven screening sites, and two countries. Non-inferiority and superiority were assessed for relevant screening metrics. RESULTS: DR with AI, compared with human DR, showed at least non-inferior recall rate, cancer detection rate, sensitivity, specificity and positive predictive value (PPV) for each mammography vendor and site, and superior recall rate, specificity, and PPV for some. The simulation indicates that using AI would have increased arbitration rate (3.3% to 12.3%), but could have reduced human workload by 30.0% to 44.8%. CONCLUSIONS: AI has potential as an IR in the DR workflow across different screening programmes, mammography equipment and geographies, substantially reducing human reader workload while maintaining or improving standard of care. TRIAL REGISTRATION: ISRCTN18056078 (20/03/2019; retrospectively registered).


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Mamografia , Inteligência Artificial , Estudos Retrospectivos , Detecção Precoce de Câncer , Programas de Rastreamento
2.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370680

RESUMO

Invasiveness status, histological grade, lymph node stage, and tumour size are important prognostic factors for breast cancer survival. This evaluation aims to compare these features for cancers detected by AI and human readers using digital mammography. Women diagnosed with breast cancer between 2009 and 2019 from three UK double-reading sites were included in this retrospective cohort evaluation. Differences in prognostic features of cancers detected by AI and the first human reader (R1) were assessed using chi-square tests, with significance at p < 0.05. From 1718 screen-detected cancers (SDCs) and 293 interval cancers (ICs), AI flagged 85.9% and 31.7%, respectively. R1 detected 90.8% of SDCs and 7.2% of ICs. Of the screen-detected cancers detected by the AI, 82.5% had an invasive component, compared to 81.1% for R1 (p-0.374). For the ICs, this was 91.5% and 93.8% for AI and R1, respectively (p = 0.829). For the invasive tumours, no differences were found for histological grade, tumour size, or lymph node stage. The AI detected more ICs. In summary, no differences in prognostic factors were found comparing SDC and ICs identified by AI or human readers. These findings support a potential role for AI in the double-reading workflow.

3.
Nat Med ; 29(12): 3044-3049, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973948

RESUMO

Artificial intelligence (AI) has the potential to improve breast cancer screening; however, prospective evidence of the safe implementation of AI into real clinical practice is limited. A commercially available AI system was implemented as an additional reader to standard double reading to flag cases for further arbitration review among screened women. Performance was assessed prospectively in three phases: a single-center pilot rollout, a wider multicenter pilot rollout and a full live rollout. The results showed that, compared to double reading, implementing the AI-assisted additional-reader process could achieve 0.7-1.6 additional cancer detection per 1,000 cases, with 0.16-0.30% additional recalls, 0-0.23% unnecessary recalls and a 0.1-1.9% increase in positive predictive value (PPV) after 7-11% additional human reads of AI-flagged cases (equating to 4-6% additional overall reading workload). The majority of cancerous cases detected by the AI-assisted additional-reader process were invasive (83.3%) and small-sized (≤10 mm, 47.0%). This evaluation suggests that using AI as an additional reader can improve the early detection of breast cancer with relevant prognostic features, with minimal to no unnecessary recalls. Although the AI-assisted additional-reader workflow requires additional reads, the higher PPV suggests that it can increase screening effectiveness.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Inteligência Artificial , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Mamografia/métodos , Variações Dependentes do Observador , Estudos Prospectivos , Estudos Retrospectivos
4.
J Breast Imaging ; 5(3): 267-276, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38416889

RESUMO

OBJECTIVE: To evaluate the effectiveness of a new strategy for using artificial intelligence (AI) as supporting reader for the detection of breast cancer in mammography-based double reading screening practice. METHODS: Large-scale multi-site, multi-vendor data were used to retrospectively evaluate a new paradigm of AI-supported reading. Here, the AI served as the second reader only if it agrees with the recall/no-recall decision of the first human reader. Otherwise, a second human reader made an assessment followed by the standard clinical workflow. The data included 280 594 cases from 180 542 female participants screened for breast cancer at seven screening sites in two countries and using equipment from four hardware vendors. The statistical analysis included non-inferiority and superiority testing of cancer screening performance and evaluation of the reduction in workload, measured as arbitration rate and number of cases requiring second human reading. RESULTS: Artificial intelligence as a supporting reader was found to be superior or noninferior on all screening metrics compared with human double reading while reducing the number of cases requiring second human reading by up to 87% (245 395/280 594). Compared with AI as an independent reader, the number of cases referred to arbitration was reduced from 13% (35 199/280 594) to 2% (5056/280 594). CONCLUSION: The simulation indicates that the proposed workflow retains screening performance of human double reading while substantially reducing the workload. Further research should study the impact on the second human reader because they would only assess cases in which the AI prediction and first human reader disagree.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Feminino , Humanos , Carga de Trabalho , Estudos Retrospectivos , Fluxo de Trabalho , Neoplasias da Mama/diagnóstico , Mamografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa