Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 27: 505-516, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35036061

RESUMO

Gene editing utilizing homology-directed repair has advanced significantly for many monogenic diseases of the hematopoietic system in recent years but has also been hindered by decreases between in vitro and in vivo gene integration rates. Homology-directed repair occurs primarily in the S/G2 phases of the cell cycle, whereas long-term engrafting hematopoietic stem cells are typically quiescent. Alternative methods for a targeted integration have been proposed including homology-independent targeted integration and precise integration into target chromosome, which utilize non-homologous end joining and microhomology-mediated end joining, respectively. Non-homologous end joining occurs throughout the cell cycle, while microhomology-mediated end joining occurs predominantly in the S phase. We compared these pathways for the integration of a corrective DNA cassette at the Bruton's tyrosine kinase gene for the treatment of X-linked agammaglobulinemia. Homology-directed repair generated the most integration in K562 cells; however, synchronizing cells into G1 resulted in the highest integration rates with homology-independent targeted integration. Only homology-directed repair produced seamless junctions, making it optimal for targets where insertions and deletions are impermissible. Bulk CD34+ cells were best edited by homology-directed repair and precise integration into the target chromosome, while sorted hematopoietic stem cells contained similar integration rates using all corrective donors.

2.
Adv Sci (Weinh) ; 9(14): e2105853, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35486030

RESUMO

Well-preserved molecular cargo in circulating extracellular vesicles (EVs) offers an ideal material for detecting oncogenic gene alterations in cancer patients, providing a noninvasive diagnostic solution for detection of disease status and monitoring treatment response. Therefore, technologies that conveniently isolate EVs with sufficient efficiency are desperately needed. Here, a lipid labeling and click chemistry-based EV capture platform ("Click Beads"), which is ideal for EV message ribonucleic acid (mRNA) assays due to its efficient, convenient, and rapid purification of EVs, enabling downstream molecular quantification using reverse transcription digital polymerase chain reaction (RT-dPCR) is described and demonstrated. Ewing sarcoma protein (EWS) gene rearrangements and kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutation status are detected and quantified using EVs isolated by Click Beads and matched with those identified in biopsy specimens from Ewing sarcoma or pancreatic cancer patients. Moreover, the quantification of gene alterations can be used for monitoring treatment responses and disease progression.


Assuntos
Vesículas Extracelulares , Sarcoma de Ewing , Carcinogênese/genética , Química Click , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Genes ras , Humanos , Lipídeos , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
3.
CRISPR J ; 4(2): 191-206, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876953

RESUMO

X-linked agammaglobulinemia (XLA) is a monogenic primary immune deficiency characterized by very low levels of immunoglobulins and greatly increased risks for recurrent and severe infections. Patients with XLA have a loss-of-function mutation in the Bruton's tyrosine kinase (BTK) gene and fail to produce mature B lymphocytes. Gene editing in the hematopoietic stem cells of XLA patients to correct or replace the defective gene should restore B cell development and the humoral immune response. We used the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 platform to precisely target integration of a corrective, codon-optimized BTK complementary DNA (cDNA) cassette into its endogenous locus. This process is driven by homologous recombination and should place the transgenic BTK under transcriptional control of its endogenous regulatory elements. Each integrated copy of this cDNA in BTK-deficient K562 cells produced only 11% as much BTK protein as the wild-type gene. The donor cDNA was modified to include the terminal intron of the BTK gene. Successful integration of the intron-containing BTK donor led to a nearly twofold increase in BTK expression per cell over the base donor. However, this donor variant was too large to package into an adeno-associated viral vector for delivery into primary cells. Donors containing truncated variants of the terminal intron also produced elevated expression, although to a lesser degree than the full intron. Addition of the Woodchuck hepatitis virus posttranscriptional regulatory element led to a large boost in BTK transgene expression. Combining these modifications led to a BTK donor template that generated nearly physiological levels of BTK expression in cell lines. These reagents were then optimized to maximize integration rates into human hematopoietic stem and progenitor cells, which have reached potentially therapeutic levels in vitro. The novel donor modifications support effective gene therapy for XLA and will likely assist in the development of other gene editing-based therapies for genetic disorders.


Assuntos
Tirosina Quinase da Agamaglobulinemia/genética , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Sistemas CRISPR-Cas , Edição de Genes/métodos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Terapia Genética , Tirosina Quinase da Agamaglobulinemia/deficiência , Tirosina Quinase da Agamaglobulinemia/metabolismo , Linfócitos B , Códon , DNA Complementar/genética , Loci Gênicos , Humanos , Íntrons , Células K562 , Mutação , Organismos Geneticamente Modificados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa