Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1091, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842410

RESUMO

In the lead-up to the Cretaceous/Paleogene mass extinction, dinosaur diversity is argued to have been either in long-term decline, or thriving until their sudden demise. The latest Cretaceous (Campanian-Maastrichtian [83-66 Ma]) of North America provides the best record to address this debate, but even here diversity reconstructions are biased by uneven sampling. Here we combine fossil occurrences with climatic and environmental modelling to quantify latest Cretaceous North American dinosaur habitat. Ecological niche modelling shows a Campanian-to-Maastrichtian habitability decrease in areas with present-day rock-outcrop. However, a continent-wide projection demonstrates habitat stability, or even a Campanian-to-Maastrichtian increase, that is not preserved. This reduction of the spatial sampling window resulted from formation of the proto-Rocky Mountains and sea-level regression. We suggest that Maastrichtian North American dinosaur diversity is therefore likely to be underestimated, with the apparent decline a product of sampling bias, and not due to a climatically-driven decrease in habitability as previously hypothesised.


Assuntos
Biodiversidade , Mudança Climática , Dinossauros , Extinção Biológica , Modelos Biológicos , Animais , Fósseis , América do Norte , Viés de Seleção , Análise Espaço-Temporal
2.
R Soc Open Sci ; 6(4): 182111, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31183138

RESUMO

Reef corals are currently undergoing climatically driven poleward range expansions, with some evidence for equatorial range retractions. Predicting their response to future climate scenarios is critical to their conservation, but ecological models are based only on short-term observations. The fossil record provides the only empirical evidence for the long-term response of organisms under perturbed climate states. The palaeontological record from the Last Interglacial (LIG; 125 000 years ago), a time of global warming, suggests that reef corals experienced poleward range shifts and an equatorial decline relative to their modern distribution. However, this record is spatio-temporally biased, and existing methods cannot account for data absence. Here, we use ecological niche modelling to estimate reef corals' realized niche and LIG distribution, based on modern and fossil occurrences. We then make inferences about modelled habitability under two future climate change scenarios (RCP4.5 and RCP8.5). Reef coral ranges during the LIG were comparable to the present, with no prominent equatorial decrease in habitability. Reef corals are likely to experience poleward range expansion and large equatorial declines under RCP4.5 and RCP8.5. However, this range expansion is probably optimistic in the face of anthropogenic climate change. Incorporation of fossil data in niche models improves forecasts of biodiversity responses under global climatic change.

3.
Sci Adv ; 5(10): eaax1697, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692956

RESUMO

The East Asian monsoon plays an integral role in human society, yet its geological history and controlling processes are poorly understood. Using a general circulation model and geological data, we explore the drivers controlling the evolution of the monsoon system over the past 150 million years. In contrast to previous work, we find that the monsoon is controlled primarily by changes in paleogeography, with little influence from atmospheric CO2. We associate increased precipitation since the Late Cretaceous with the gradual uplift of the Himalayan-Tibetan region, transitioning from an ITCZ-dominated monsoon to a sea breeze-dominated monsoon. The rising region acted as a mechanical barrier to cold and dry continental air advecting into the region, leading to increasing influence of moist air from the Indian Ocean/South China Sea. We show that, apart from a dry period in the middle Cretaceous, a monsoon system has existed in East Asia since at least the Early Cretaceous.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa