Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(4): 858-860, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606985

RESUMO

Recent findings of an active neuroimmune exchange at brain border regions have challenged the concept of the immune-privileged central nervous system. The study by Rustenhoven et al. in this issue of Cell shows that dural sinuses serve as a conduit for brain-derived antigens to interact with the immune system, allowing in situ immune surveillance.


Assuntos
Encéfalo , Cavidades Cranianas , Humanos
2.
Nature ; 554(7693): 475-480, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29443965

RESUMO

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.


Assuntos
Vasos Sanguíneos/citologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Células Endoteliais/classificação , Animais , Artérias/citologia , Arteríolas/citologia , Capilares/citologia , Feminino , Fibroblastos/classificação , Masculino , Camundongos , Miócitos de Músculo Liso/classificação , Especificidade de Órgãos , Pericitos/classificação , Análise de Célula Única , Transcriptoma , Veias/citologia
3.
Nature ; 560(7716): E3, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29925939

RESUMO

In Fig. 1b of this Article, 'Csf1r' was misspelt 'Csfr1'. In addition, in Extended Data Fig. 11b, owing to an error during figure formatting, the genes listed in the first column shifted down three rows below the first gene on the list, causing a mismatch between the gene names and their characteristics. These errors have been corrected online, and the original Extended Data Fig. 11b is provided as Supplementary Information to the accompanying Amendment.

4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653955

RESUMO

Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood-brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfbret/ret ), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfbret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti-ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfbret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfbret/ret ;2D2tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder.


Assuntos
Barreira Hematoencefálica/imunologia , Encefalomielite Autoimune Experimental/imunologia , Homeostase/imunologia , Leucócitos/imunologia , Pericitos/imunologia , Animais , Barreira Hematoencefálica/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Homeostase/genética , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Leucócitos/patologia , Camundongos , Camundongos Transgênicos , Pericitos/patologia , Proteínas Proto-Oncogênicas c-sis/deficiência , Proteínas Proto-Oncogênicas c-sis/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
5.
Circ Res ; 128(4): e46-e62, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33375813

RESUMO

RATIONALE: Pericytes are capillary mural cells playing a role in stabilizing newly formed blood vessels during development and tissue repair. Loss of pericytes has been described in several brain disorders, and genetically induced pericyte deficiency in the brain leads to increased macromolecular leakage across the blood-brain barrier (BBB). However, the molecular details of the endothelial response to pericyte deficiency remain elusive. OBJECTIVE: To map the transcriptional changes in brain endothelial cells resulting from lack of pericyte contact at single-cell level and to correlate them with regional heterogeneities in BBB function and vascular phenotype. METHODS AND RESULTS: We reveal transcriptional, morphological, and functional consequences of pericyte absence for brain endothelial cells using a combination of methodologies, including single-cell RNA sequencing, tracer analyses, and immunofluorescent detection of protein expression in pericyte-deficient adult Pdgfbret/ret mice. We find that endothelial cells without pericyte contact retain a general BBB-specific gene expression profile, however, they acquire a venous-shifted molecular pattern and become transformed regarding the expression of numerous growth factors and regulatory proteins. Adult Pdgfbret/ret brains display ongoing angiogenic sprouting without concomitant cell proliferation providing unique insights into the endothelial tip cell transcriptome. We also reveal heterogeneous modes of pericyte-deficient BBB impairment, where hotspot leakage sites display arteriolar-shifted identity and pinpoint putative BBB regulators. By testing the causal involvement of some of these using reverse genetics, we uncover a reinforcing role for angiopoietin 2 at the BBB. CONCLUSIONS: By elucidating the complexity of endothelial response to pericyte deficiency at cellular resolution, our study provides insight into the importance of brain pericytes for endothelial arterio-venous zonation, angiogenic quiescence, and a limited set of BBB functions. The BBB-reinforcing role of ANGPT2 (angiopoietin 2) is paradoxical given its wider role as TIE2 (TEK receptor tyrosine kinase) receptor antagonist and may suggest a unique and context-dependent function of ANGPT2 in the brain.


Assuntos
Barreira Hematoencefálica/metabolismo , Pericitos/citologia , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/patologia , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Linfocinas/deficiência , Linfocinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Pericitos/metabolismo , Pericitos/patologia , Fator de Crescimento Derivado de Plaquetas/deficiência , Fator de Crescimento Derivado de Plaquetas/genética , Análise de Célula Única , Transcriptoma
6.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32404031

RESUMO

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Transportador de Glucose Tipo 1/fisiologia , Neovascularização Fisiológica , Vasos Retinianos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Encéfalo/citologia , Movimento Celular , Proliferação de Células , Células Endoteliais/fisiologia , Endotélio , Endotélio Vascular/fisiologia , Metabolismo Energético , Glucose/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glicólise , Humanos , Camundongos , Retina/citologia
7.
Handb Exp Pharmacol ; 273: 33-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33582883

RESUMO

The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity - functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.


Assuntos
Encéfalo , Neurônios , Barreira Hematoencefálica/metabolismo , Humanos , Neuroglia , Neurônios/metabolismo
8.
PLoS Pathog ; 14(11): e1007424, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496289

RESUMO

Transmissible spongiform encephalopathies (TSEs) are caused by the prion, which consists essentially of PrPSc, an aggregated, conformationally modified form of the cellular prion protein (PrPC). Although TSEs can be experimentally transmitted by intracerebral inoculation, most instances of infection in the field occur through extracerebral routes. The epidemics of kuru and variant Creutzfeldt-Jakob disease were caused by dietary exposure to prions, and parenteral administration of prion-contaminated hormones has caused hundreds of iatrogenic TSEs. In all these instances, the development of postexposure prophylaxis relies on understanding of how prions propagate from the site of entry to the brain. While much evidence points to lymphoreticular invasion followed by retrograde transfer through peripheral nerves, prions are present in the blood and may conceivably cross the blood-brain barrier directly. Here we have addressed the role of the blood-brain barrier (BBB) in prion disease propagation using Pdgfbret/ret mice which possess a highly permeable BBB. We found that Pdgfbret/ret mice have a similar prion disease incubation time as their littermate controls regardless of the route of prion transmission. These surprising results indicate that BBB permeability is irrelevant to the initiation of prion disease, even when prions are administered parenterally.


Assuntos
Barreira Hematoencefálica/metabolismo , Doenças Priônicas/metabolismo , Príons/metabolismo , Animais , Transporte Biológico , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Bovinos , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Encefalopatia Espongiforme Bovina/patologia , Humanos , Camundongos , Doenças Priônicas/transmissão , Proteínas Priônicas/metabolismo , Príons/patogenicidade , Scrapie/patologia
9.
Brain ; 142(4): 885-902, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30805583

RESUMO

Brain calcifications are commonly detected in aged individuals and accompany numerous brain diseases, but their functional importance is not understood. In cases of primary familial brain calcification, an autosomally inherited neuropsychiatric disorder, the presence of bilateral brain calcifications in the absence of secondary causes of brain calcification is a diagnostic criterion. To date, mutations in five genes including solute carrier 20 member 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), myogenesis regulating glycosidase (MYORG), platelet-derived growth factor B (PDGFB) and platelet-derived growth factor receptor ß (PDGFRB), are considered causal. Previously, we have reported that mutations in PDGFB in humans are associated with primary familial brain calcification, and mice hypomorphic for PDGFB (Pdgfbret/ret) present with brain vessel calcifications in the deep regions of the brain that increase with age, mimicking the pathology observed in human mutation carriers. In this study, we characterize the cellular environment surrounding calcifications in Pdgfbret/ret animals and show that cells around vessel-associated calcifications express markers for osteoblasts, osteoclasts and osteocytes, and that bone matrix proteins are present in vessel-associated calcifications. Additionally, we also demonstrate the osteogenic environment around brain calcifications in genetically confirmed primary familial brain calcification cases. We show that calcifications cause oxidative stress in astrocytes and evoke expression of neurotoxic astrocyte markers. Similar to previously reported human primary familial brain calcification cases, we describe high interindividual variation in calcification load in Pdgfbret/ret animals, as assessed by ex vivo and in vivo quantification of calcifications. We also report that serum of Pdgfbret/ret animals does not differ in calcification propensity from control animals and that vessel calcification occurs only in the brains of Pdgfbret/ret animals. Notably, ossification of vessels and astrocytic neurotoxic response is associated with specific behavioural and cognitive alterations, some of which are associated with primary familial brain calcification in a subset of patients.


Assuntos
Astrócitos/metabolismo , Ossificação Heterotópica/patologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Idoso , Animais , Encéfalo/patologia , Encefalopatias/genética , Calcinose/patologia , Feminino , Humanos , Masculino , Camundongos , Mutação , Osteogênese/fisiologia , Estresse Oxidativo , Linhagem , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Receptor do Retrovírus Politrópico e Xenotrópico
10.
MAGMA ; 33(6): 769-781, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32468149

RESUMO

OBJECTIVE: Brain calcifications are associated with several neurodegenerative diseases. Here, we describe the occurrence of intracranial calcifications as a new phenotype in transgenic P301L mice overexpressing four repeat tau, a model of human tauopathy. MATERIALS AND METHODS: Thirty-six P301L mice (Thy1.2) and ten age-matched non-transgenic littermates of different ages were assessed. Gradient echo data were acquired in vivo and ex vivo at 7 T and 9.4 T for susceptibility-weighted imaging (SWI) and phase imaging. In addition, ex vivo micro-computed tomography (µCT) was performed. Histochemistry and immunohistochemistry were used to investigate the nature of the imaging lesions. RESULTS: SW images revealed regional hypointensities in the hippocampus, cortex, caudate nucleus, and thalamus of P301L mice, which in corresponding phase images indicated diamagnetic lesions. Concomitantly, µCT detected hyperdense lesions, though fewer lesions were observed compared to MRI. Diamagnetic susceptibility lesions in the hippocampus increased with age. The immunochemical staining of brain sections revealed osteocalcin-positive deposits. Furthermore, intra-neuronal and vessel-associated osteocalcin-containing nodules co-localized with phosphorylated-tau (AT8 and AT100) in the hippocampus, while vascular osteocalcin-containing nodules were detected in the thalamus in the absence of phosphorylated-tau deposition. DISCUSSION: SWI and phase imaging sensitively detected intracranial calcifications in the P301L mouse model of human tauopathy.


Assuntos
Tauopatias , Proteínas tau , Animais , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Tauopatias/diagnóstico por imagem , Microtomografia por Raio-X
11.
Adv Exp Med Biol ; 1147: 247-264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147881

RESUMO

Pericytes are perivascular cells along capillaries that are critical for the development of a functional vascular bed in the central nervous system and other organs. Pericyte functions in the adult brain are less well understood. Pericytes have been suggested to mediate functional hyperemia at the capillary level, regulate the blood-brain barrier and to give rise to scar tissue after spinal cord injury. Furthermore, pericyte loss has been suggested to precede cognitive decline in mouse models of Alzheimer's disease. Despite this observation, there is no convincing causality between pericyte loss and the pathogenesis of Alzheimer's disease. However, recent loss-of-function mutations in PDGFB and PDGFRB genes have implicated pericytes as the principle cell type affected in primary familiar brain calcification (PFBC), a neuropsychiatric disorder with dominant inheritance. Here we review the role of the PDGFB/PDGFRB signaling pathway in pericyte development and briefly discuss homeostatic functions of pericytes in the brain. We provide an overview of recent studies with mouse models of PFBC and discuss suggested pathogenic mechanisms for PFBC with special reference to pericytes.


Assuntos
Encefalopatias , Calcinose , Pericitos , Adulto , Animais , Encéfalo , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-sis , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Receptor do Retrovírus Politrópico e Xenotrópico
12.
PLoS Pathog ; 10(12): e1004531, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25502554

RESUMO

Prion infections cause neurodegeneration, which often goes along with oxidative stress. However, the cellular source of reactive oxygen species (ROS) and their pathogenetic significance are unclear. Here we analyzed the contribution of NOX2, a prominent NADPH oxidase, to prion diseases. We found that NOX2 is markedly upregulated in microglia within affected brain regions of patients with Creutzfeldt-Jakob disease (CJD). Similarly, NOX2 expression was upregulated in prion-inoculated mouse brains and in murine cerebellar organotypic cultured slices (COCS). We then removed microglia from COCS using a ganciclovir-dependent lineage ablation strategy. NOX2 became undetectable in ganciclovir-treated COCS, confirming its microglial origin. Upon challenge with prions, NOX2-deficient mice showed delayed onset of motor deficits and a modest, but significant prolongation of survival. Dihydroethidium assays demonstrated a conspicuous ROS burst at the terminal stage of disease in wild-type mice, but not in NOX2-ablated mice. Interestingly, the improved motor performance in NOX2 deficient mice was already measurable at earlier stages of the disease, between 13 and 16 weeks post-inoculation. We conclude that NOX2 is a major source of ROS in prion diseases and can affect prion pathogenesis.


Assuntos
Síndrome de Creutzfeldt-Jakob/fisiopatologia , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Doenças Priônicas/fisiopatologia , Príons/fisiologia , Animais , Estudos de Casos e Controles , Proliferação de Células , Cerebelo/metabolismo , Cerebelo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Humanos , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Espécies Reativas de Oxigênio/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 35(2): 409-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25477343

RESUMO

OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS: Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS: We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.


Assuntos
Barreira Hematoencefálica/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores Notch/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Barreira Hematoencefálica/patologia , Permeabilidade Capilar , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/metabolismo , Microvasos/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Pericitos/metabolismo , Fenótipo , Receptor Notch3 , Receptores Notch/deficiência , Receptores Notch/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Transcrição Gênica
15.
Neuron ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897208

RESUMO

Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.

16.
Life Sci ; 321: 121593, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934970

RESUMO

AIMS: Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aß) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aß. MATERIALS AND METHODS: Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAß mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aß in brain tissue slices from pR5, arcAß and non-transgenic mice. KEY FINDINGS: pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAß mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAß mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aß plaques in arcAß mice. SIGNIFICANCE: We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAß mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aß pathologies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Aquaporina 4 , Proteínas tau , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/patologia , Proteínas tau/metabolismo
17.
J Cereb Blood Flow Metab ; 43(5): 763-777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36545806

RESUMO

Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2 and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations.


Assuntos
Células Endoteliais , Pericitos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-sis/metabolismo , Pericitos/metabolismo , Modelos Animais de Doenças , Becaplermina/metabolismo , Hemodinâmica , Oxigênio/metabolismo
18.
Brain Pathol ; 33(6): e13189, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37505935

RESUMO

Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Calcificação Vascular , Humanos , Animais , Camundongos , Encefalopatias/patologia , Fosfatos/metabolismo , Encéfalo/patologia , Receptor do Retrovírus Politrópico e Xenotrópico , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Doenças Neurodegenerativas/patologia , Mutação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
19.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711773

RESUMO

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds and rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and ex vivo human brain slices although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. Vasculature-secreted Hevin (a synaptogenic protein) rescued synaptic deficits in a mouse model.

20.
Nat Commun ; 14(1): 3345, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291094

RESUMO

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.


Assuntos
Células Endoteliais , Roedores , Camundongos , Ratos , Animais , Células Endoteliais/metabolismo , Roedores/genética , Macaca mulatta/genética , Encéfalo/metabolismo , Tropismo/genética , Camundongos Knockout , Dependovirus/metabolismo , Vetores Genéticos/genética , Transdução Genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa