Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Phys Chem A ; 119(41): 10390-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26401726

RESUMO

Sulfur dioxide-pyridine complex formation was reinvestigated using Fourier transform infrared (FTIR) spectroscopy and computational methods. The SO2-pyridine dimer has been proposed to have a v-shaped, Cs-symmetric structure based on the microwave spectrum; however, recent research showing the occurrence of X···H-C hydrogen bonds in noncovalent complexes suggested that the structure of the complex should be re-examined. The FTIR spectrum of the dimer was obtained by numerical analysis of the spectra of pyridine-SO2 mixtures in CCl4. The spectrum showed ortho C-H stretching modes consistent with a C1-symmetric structure containing a S-O bond oriented approximately coplanar with the pyridine ring and adjacent to an ortho C-H moiety. The C1 structure, which was identified as the global minimum by various density functional theory and correlated ab initio calculations, is also consistent with the out-of-plane second moment (Pbb) value previously determined by microwave spectroscopy. The complex is converted to its mirror image via three possible Cs-symmetric transition states: v-shaped, bisected, and flat. At the M06-2X/6-311++G(2d,p) level of theory, the rotational barriers (ΔG(o‡)) are 1.40, 1.87, and 3.63 kcal mol(-1), respectively. Natural bond order analysis indicated the asymmetric complex is stabilized both by N→S donation and back-donation from O to antibonding orbitals on pyridine. Atoms in molecules calculations identified a bond critical point within the O···H-C gap consistent with a normal, albeit weak, hydrogen bond. Theoretical studies also identified a high-energy sandwich-type dimer with Cs symmetry, and a C2-symmetric SO2-pyridine2 trimer.


Assuntos
Piridinas/química , Teoria Quântica , Dióxido de Enxofre/química , Dimerização , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Phys Chem A ; 114(50): 13182-8, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21117658

RESUMO

We report the first theoretical study of noncovalent and covalent interactions in formic acid (FA)-SO(2) complexes. Using ab initio and DFT model chemistries, five stable noncovalent complexes were identified, as well as a covalent adduct, formic sulfurous anhydride HOSO(2)CHO. syn-FA is predicted to form two nonplanar bidentate complexes with SO(2): the more stable one contains a normal hydrogen bond donated by OH, and the less stable one contains a blue-shifted hydrogen bond donated by CH. Both are stabilized by charge transfer from FA to SO(2). anti-FA forms three planar complexes of nearly equal energy containing OH-to-SO(2) hydrogen bonds. Formic sulfurous anhydride forms via an endothermic concerted cycloaddition. Natural bond orbital analysis showed that the bidentate SO(2)-FA complexes are stabilized by n → π* donation from FA to SO(2), and back-donation from SO(2) n and π* orbitals into FA σ(OH)* or σ(CH)* orbitals. The bidentate formic acid-SO(2) complex that contains an O-H···O hydrogen bond is more stable than the similar nitric acid-SO(2) complex. The latter contains a stronger hydrogen bond but shows no O→S charge transfer interaction.

3.
RSC Adv ; 10(27): 16038-16044, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35493645

RESUMO

Trimethylamine-boranecarboxylic acid (CH3)3N-BH2COOH and other amine carboxyboranes have been observed to undergo slow decarbonylation in neutral aqueous solution. This reaction, when it occurs in vivo, may have a therapeutic effect by delivering low concentrations of carbon monoxide over an extended period. In order to identify a possible mechanistic pathway for decarbonylation, the smallest tertiary amine derivative and its corresponding carboxylate ion were studied using CCSD(T)/PCM/6-311++G(2d,p)//M06-2X/PCM/6-311++G(2d,p) model chemistry. The proposed mechanistic pathway begins with a trimethylamine boranecarboxylate ion, which first undergoes an internal substitution reaction (SNi) to give free amine and the carboxyborane anion BH2COO-. The latter cyclic ion then releases CO via a rapid chelotropic fragmentation. The role of water solvent in these reactions was explored by structural and energetic analysis of hydrogen-bonded complexes. It was found that complexation with water inhibits dissociation of trimethylamine by stabilizing the trimethylamine carboxyborane anion, whereas water accelerates CO loss by stabilizing the polar chelotropic transition state.

4.
Aviat Space Environ Med ; 77(12): 1244-51, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17183920

RESUMO

INTRODUCTION: Aviation spatial disorientation mishaps remain a concern, especially due to their fatality rate. Some of the most insidious disorientations are due to vestibular stimuli in the absence of visual cues. A category of such disorientations are known as somatogyral illusions. METHODS: To determine the effects of spin rate and duration on the perception of the somatogyral illusion, we examined the subjective response of pilots and non-pilots to rotation around the yaw axis in a flight simulator in a manner that would mimic two vestibular illusions found in flight: the washout of the semi-circular canals following sustained turns, and the illusory counter-rotation following return to straight and level flight. There were 29 subjects (14 pilots) who were seated blindfolded in a flight simulator which accelerated to constant plateau rotation rates of 20, 70, and 120 degrees x s(-1) and then decelerated to stationary; plateaus were 10, 20, or 40 s. Subjects reported 1) the time when the perception of rotation ceased (i.e., the subjective time until washout was reached); 2) the relative magnitude of the counter-rotation experienced; and 3) the time until the perception of counter-rotation ceased. Subjects also manipulated a slider to provide a continuous subjective measure of their experience of rotation. RESULTS: The two time measures increased with increases in both the duration and magnitude of the spin. The increase in perceived washout time with spin rate was non-linear (geometric). There was an interaction between spin duration and spin rate on the experience of illusory counter-rotation magnitude such that at low rates, spin duration had no effect, but its effect increased at faster rates. The time constant of adaptation of the semicircular canals was estimated to be 8.3 s. DISCUSSION: The effects were validated against a model of semicircular canal and cupola adaptation, which predicted the data with high accuracy. Pilots and non-pilots did not differ in their illusory experience.


Assuntos
Medicina Aeroespacial , Simulação por Computador , Ilusões , Percepção de Movimento/fisiologia , Rotação , Vestíbulo do Labirinto/fisiologia , Adaptação Fisiológica , Adolescente , Adulto , Humanos
5.
Rev Sci Instrum ; 86(7): 071301, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233339

RESUMO

We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].

6.
Biochemistry ; 44(50): 16392-404, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16342932

RESUMO

Dialkylglycine decarboxylase (DGD) is a pyridoxal phosphate dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. DGD uses stereoelectronic effects to control its unusual reaction specificity. X-ray crystallographic structures of DGD suggest that Q52 is important in maintaining the substrate carboxylate in a stereoelectronically activated position. Here, the X-ray structures of the Q52A mutant and the wild type (WT) DGD-PMP enzymes are presented, as is the analysis of steady-state and half-reaction kinetics of three Q52 mutants (Q52A, Q52I, and Q52E). As expected if stereoelectronic effects are important to catalysis, the steady-state rate of decarboxylation for all three mutants has decreased significantly compared to that of WT. Q52A exhibits an approximately 85-fold decrease in k(cat) relative to that of WT. The rate of the decarboxylation half-reaction decreases approximately 10(5)-fold in Q52I and approximately 10(4)-fold in Q52E compared to that of WT. Transamination half-reaction kinetics show that Q52A and Q52I have greatly reduced rates compared to that of WT and are seriously impaired in pyridoxamine phosphate (PMP) binding, with K(PMP) at least 50-100-fold greater than that of WT. The larger effect on the rate of l-alanine transamination than of pyruvate transamination in these mutants suggests that the rate decrease is the result of selective destabilization of the PMP form of the enzyme in these mutants. Q52E exhibits near-WT rates for transamination of both pyruvate and l-alanine. Substrate binding has been greatly weakened in Q52E with apparent dissociation constants at least 100-fold greater than that of WT. The rate of decarboxylation in Q52E allows the energetic contribution of stereoelectronic effects, DeltaG(stereoelectronic), to be estimated to be -7.3 kcal/mol for DGD.


Assuntos
Carboxiliases/metabolismo , Aminação , Sequência de Bases , Carboxiliases/química , Carboxiliases/genética , Catálise , Primers do DNA , Descarboxilação , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa