Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lung ; 202(4): 471-481, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38856932

RESUMO

PURPOSE: Skin pigmentation influences peripheral oxygen saturation (SpO2) compared to arterial saturation of oxygen (SaO2). Occult hypoxemia (SaO2 ≤ 88% with SpO2 ≥ 92%) is associated with increased in-hospital mortality in venovenous-extracorporeal membrane oxygenation (VV-ECMO) patients. We hypothesized VV-ECMO cannulation, in addition to race/ethnicity, accentuates the SpO2-SaO2 discrepancy due to significant hemolysis. METHODS: Adults (≥ 18 years) supported with VV-ECMO with concurrently measured SpO2 and SaO2 measurements from over 500 centers in the Extracorporeal Life Support Organization Registry (1/2018-5/2023) were included. Multivariable logistic regressions were performed to examine whether race/ethnicity was associated with occult hypoxemia in pre-ECMO and on-ECMO SpO2-SaO2 calculations. RESULTS: Of 13,171 VV-ECMO patients, there were 7772 (59%) White, 2114 (16%) Hispanic, 1777 (14%) Black, and 1508 (11%) Asian patients. The frequency of on-ECMO occult hypoxemia was 2.0% (N = 233). Occult hypoxemia was more common in Black and Hispanic patients versus White patients (3.1% versus 1.7%, P < 0.001 and 2.5% versus 1.7%, P = 0.025, respectively). In multivariable logistic regression, Black patients were at higher risk of pre-ECMO occult hypoxemia versus White patients (adjusted odds ratio [aOR] = 1.55, 95% confidence interval [CI] = 1.18-2.02, P = 0.001). For on-ECMO occult hypoxemia, Black patients (aOR = 1.79, 95% CI = 1.16-2.75, P = 0.008) and Hispanic patients (aOR = 1.71, 95% CI = 1.15-2.55, P = 0.008) had higher risk versus White patients. Higher pump flow rates (aOR = 1.29, 95% CI = 1.08-1.55, P = 0.005) and on-ECMO 24-h lactate (aOR = 1.06, 95% CI = 1.03-1.10, P < 0.001) significantly increased the risk of on-ECMO occult hypoxemia. CONCLUSION: SaO2 should be carefully monitored if using SpO2 during ECMO support for Black and Hispanic patients especially for those with high pump flow and lactate values at risk for occult hypoxemia.


Assuntos
Oxigenação por Membrana Extracorpórea , Hipóxia , Sistema de Registros , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Hipóxia/terapia , Hipóxia/sangue , Hipóxia/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Saturação de Oxigênio , Hispânico ou Latino/estatística & dados numéricos , Mortalidade Hospitalar , População Branca , Idoso , Estados Unidos/epidemiologia , Negro ou Afro-Americano , Hemólise
2.
J Cardiothorac Vasc Anesth ; 38(9): 2080-2088, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955616

RESUMO

Postcardiotomy shock in the cardiac surgical patient is a highly morbid condition characterized by profound myocardial impairment and decreased systemic perfusion inadequate to meet end-organ metabolic demand. Postcardiotomy shock is associated with significant morbidity and mortality. Poor outcomes motivate the increased use of mechanical circulatory support (MCS) to restore perfusion in an effort to prevent multiorgan injury and improve patient survival. Despite growing acceptance and adoption of MCS for postcardiotomy shock, criteria for initiation, clinical management, and future areas of clinical investigation remain a topic of ongoing debate. This article seeks to (1) define critical cardiac dysfunction in the patient after cardiotomy, (2) provide an overview of commonly used MCS devices, and (3) summarize the relevant clinical experience for various MCS devices available in the literature, with additional recognition for the role of MCS as a part of a modified approach to the cardiac arrest algorithm in the cardiac surgical patient.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Coração Auxiliar , Humanos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/métodos , Procedimentos Cirúrgicos Cardíacos/tendências , Coração Auxiliar/tendências , Oxigenação por Membrana Extracorpórea/métodos , Oxigenação por Membrana Extracorpórea/tendências , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/terapia
3.
Neurocrit Care ; 38(3): 612-621, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36167950

RESUMO

BACKGROUND: Pulse pressure is a dynamic marker of cardiovascular function and is often impaired in patients on venoarterial extracorporeal membrane oxygenation (VA-ECMO). Pulsatile blood flow also serves as a regulator of vascular endothelium, and continuous-flow mechanical circulatory support can lead to endothelial dysfunction. We explored the impact of early low pulse pressure on occurrence of acute brain injury (ABI) in VA-ECMO. METHODS: We conducted a retrospective analysis of adults with VA-ECMO at a tertiary care center between July 2016 and January 2021. Patients underwent standardized multimodal neuromonitoring throughout ECMO support. ABI included intracranial hemorrhage, ischemic stroke, hypoxic ischemic brain injury, cerebral edema, seizure, and brain death. Blood pressures were recorded every 15 min. Low pulse pressure was defined as a median pulse pressure < 20 mm Hg in the first 12 h of ECMO. Multivariable logistic regression was performed to investigate the association between pulse pressure and ABI. RESULTS: We analyzed 5138 blood pressure measurements from 123 (median age 63; 63% male) VA-ECMO patients (54% peripheral; 46% central cannulation), of whom 41 (33%) experienced ABI. Individual ABIs were as follows: ischemic stroke (n = 18, 15%), hypoxic ischemic brain injury (n = 14, 11%), seizure (n = 8, 7%), intracranial hemorrhage (n = 7, 6%), cerebral edema (n = 7, 6%), and brain death (n = 2, 2%). Fifty-eight (47%) patients had low pulse pressure. In a multivariable model adjusting for preselected covariates, including cannulation strategy (central vs. peripheral), lactate on ECMO day 1, and left ventricle venting strategy, low pulse pressure was independently associated with ABI (adjusted odds ratio 2.57, 95% confidence interval 1.05-6.24). In a model with the same covariates, every 10-mm Hg decrease in pulse pressure was associated with 31% increased odds of ABI (95% confidence interval 1.01-1.68). In a sensitivity analysis model adjusting for systolic pressure, pulse pressure remained significantly associated with ABI. CONCLUSIONS: Early low pulse pressure (< 20 mm Hg) was associated with ABI in VA-ECMO patients. Low pulse pressure may serve as a marker of ABI risk, which necessitates close neuromonitoring for early detection.


Assuntos
Edema Encefálico , Lesões Encefálicas , Oxigenação por Membrana Extracorpórea , AVC Isquêmico , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Pressão Sanguínea , Morte Encefálica , Convulsões , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/terapia
4.
J Card Surg ; 35(7): 1514-1524, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32485030

RESUMO

INTRODUCTION: Extracorporeal membrane oxygenation (ECMO) is a life-saving technology capable of restoring perfusion but is not without significant complications that limit its realizable therapeutic benefit. ECMO-induced hemodynamics increase cardiac afterload risking left ventricular distention and impaired cardiac recovery. To mitigate potentially harmful effects, multiple strategies to unload the left ventricle (LV) are used in clinical practice but data supporting the optimal approach is presently lacking. MATERIALS & METHODS: We reviewed outcomes of our ECMO population from September 2015 through January 2019 to determine if our LV unloading strategies were associated with patient outcomes. We compared reactive (Group 1, n = 30) versus immediate (Group 2, n = 33) LV unloading and then compared patients unloaded with an Impella CP (n = 19) versus an intra-aortic balloon pump (IABP, n = 16), analyzing survival and ECMO-related complications. RESULTS: Survival was similar between Groups 1 and 2 (33 vs 42%, P = .426) with Group 2 experiencing more clinically-significant hemorrhage (40 vs. 67%, P = .034). Survival and ECMO-related complications were similar between patients unloaded with an Impella versus an IABP. However, the Impella group exhibited a higher rate of survival (37%) than predicted by their median SAVE score (18%). DISCUSSION: Based on this analysis, reactive unloading appears to be a viable strategy while venting with the Impella CP provides better than anticipated survival. Our findings correlate with recent large cohort studies and motivate further work to design clinical guidelines and future trial design.


Assuntos
Oxigenação por Membrana Extracorpórea/efeitos adversos , Coração Auxiliar , Balão Intra-Aórtico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/terapia , Idoso , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento , Disfunção Ventricular Esquerda/mortalidade , Disfunção Ventricular Esquerda/fisiopatologia
5.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138181

RESUMO

The 1918 influenza killed approximately 50 million people in a few short years, and now, the world is facing another pandemic. In December 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an international outbreak of a respiratory illness termed coronavirus disease 2019 (COVID-19) and rapidly spread to cause the worst pandemic since 1918. Recent clinical reports highlight an atypical presentation of acute respiratory distress syndrome (ARDS) in COVID-19 patients characterized by severe hypoxemia, an imbalance of the renin-angiotensin system, an increase in thrombogenic processes, and a cytokine release storm. These processes not only exacerbate lung injury but can also promote pulmonary vascular remodeling and vasoconstriction, which are hallmarks of pulmonary hypertension (PH). PH is a complication of ARDS that has received little attention; thus, we hypothesize that PH in COVID-19-induced ARDS represents an important target for disease amelioration. The mechanisms that can promote PH following SARS-CoV-2 infection are described. In this review article, we outline emerging mechanisms of pulmonary vascular dysfunction and outline potential treatment options that have been clinically tested.


Assuntos
Lesão Pulmonar Aguda/patologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/patologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Síndrome Respiratória Aguda Grave/patologia , Vasoconstrição/fisiologia , Betacoronavirus , COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/patologia , Sistema Calicreína-Cinina/fisiologia , Pandemias , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Vasoconstrição/efeitos dos fármacos
6.
Crit Care Med ; 47(9): 1235-1242, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31219839

RESUMO

OBJECTIVES: Cardiogenic shock is a highly morbid condition in which inadequate end-organ perfusion leads to death if untreated. Peripheral venoarterial extracorporeal membrane oxygenation is increasingly used to restore systemic perfusion despite limited understanding of how to optimally titrate support. This review provides insights into the physiologic basis of extracorporeal membrane oxygenation support and presents an approach to extracorporeal membrane oxygenation management in the cardiogenic shock patient. DATA SOURCES, STUDY SELECTION, AND DATA EXTRACTION: Data were obtained from a PubMed search of the most recent medical literature identified from MeSH terms: extracorporeal membrane oxygenation, cardiogenic shock, percutaneous mechanical circulatory support, and heart failure. Articles included original articles, case reports, and review articles. DATA SYNTHESIS: Current evidence detailing the use of extracorporeal membrane oxygenation to support patients in cardiogenic shock is limited to isolated case reports and single institution case series focused on patient outcomes but lacking in detailed approaches to extracorporeal membrane oxygenation management. Unlike medical therapy, in which dosages are either prescribed or carefully titrated to specific variables, extracorporeal membrane oxygenation is a mechanical support therapy requiring ongoing titration but without widely accepted variables to guide treatment. Similar to mechanical ventilation, extracorporeal membrane oxygenation can provide substantial benefit or induce significant harm. The widespread use and present lack of data to guide extracorporeal membrane oxygenation support demands that intensivists adopt a physiologically-based approach to management of the cardiogenic shock patient on extracorporeal membrane oxygenation. CONCLUSIONS: Extracorporeal membrane oxygenation is a powerful mechanical circulatory support modality capable of rapidly restoring systemic perfusion yet lacking in defined approaches to management. Adopting a management approach based physiologic principles provides a basis for care.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Choque Cardiogênico/terapia , Insuficiência Cardíaca/complicações , Humanos , Traumatismo por Reperfusão/prevenção & controle , Choque Cardiogênico/etiologia , Choque Cardiogênico/fisiopatologia , Fatores de Tempo
7.
Crit Care Med ; 48(4): e332-e333, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205625
8.
Curr Opin Crit Care ; 20(3): 340-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24751808

RESUMO

PURPOSE OF REVIEW: Studies in patients with acute respiratory distress syndrome (ARDS) have been unable to demonstrate a survival advantage with higher levels of positive end-expiratory pressure (PEEP) to open atelectatic lung regions or prevent their cyclic collapse. This review will discuss the challenges of accurately measuring pleural pressure with balloon-tipped catheters in the oesophagus, and the utility of such pressure monitoring to set PEEP and assess lung mechanics, focusing on patients with ARDS. RECENT FINDINGS: Recent investigations have suggested that the monitoring of oesophageal pressure in ARDS patients may help individualize PEEP settings to optimize lung recruitment based on transpulmonary pressure. SUMMARY: Changes in oesophageal pressure likely accurately reflect global changes in pleural pressure in supine patients with ARDS. However, absolute oesophageal pressure values in such patients may be subject to local artefacts and may substantially overestimate pleural pressure in other lung regions. Setting PEEP high enough to achieve a targeted end-expiratory transpulmonary pressure in the region of the oesophageal balloon catheter could overdistend other lung regions. Measurement of oesophageal pressure is feasible, but its clinical utility to titrate PEEP, compared with routine assessment, awaits experimental confirmation.


Assuntos
Esôfago/fisiopatologia , Pulmão/fisiopatologia , Monitorização Fisiológica , Pleura/fisiopatologia , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/fisiopatologia , Feminino , Humanos , Masculino , Monitorização Fisiológica/métodos , Posicionamento do Paciente , Pressão
9.
Sci Transl Med ; 16(734): eadk4266, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354226

RESUMO

Ventricular assist devices (VADs) offer mechanical support for patients with cardiogenic shock by unloading the impaired ventricle and increasing cardiac outflow and subsequent tissue perfusion. Their ability to adjust ventricular assistance allows for rapid and safe dynamic changes in cardiac load, which can be used with direct measures of chamber pressures to quantify cardiac pathophysiologic state, predict response to interventions, and unmask vulnerabilities such as limitations of left-sided support efficacy due to intolerance of the right heart. We defined hemodynamic metrics in five pigs with dynamic peripheral transvalvular VAD (pVAD) support to the left ventricle. Metrics were obtained across a spectrum of disease states, including left ventricular ischemia induced by titrated microembolization of a coronary artery and right ventricular strain induced by titrated microembolization of the pulmonary arteries. A sweep of different pVAD speeds confirmed mechanisms of right heart decompensation after left-sided support and revealed intolerance. In contrast to the systemic circulation, pulmonary vascular compliance dominated in the right heart and defined the ability of the right heart to adapt to left-sided pVAD unloading. We developed a clinically accessible metric to measure pulmonary vascular compliance at different pVAD speeds that could predict right heart efficiency and tolerance to left-sided pVAD support. Findings in swine were validated with retrospective hemodynamic data from eight patients on pVAD support. This methodology and metric could be used to track right heart tolerance, predict decompensation before right heart failure, and guide titration of device speed and the need for biventricular support.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Humanos , Animais , Suínos , Choque Cardiogênico , Ventrículos do Coração , Estudos Retrospectivos , Insuficiência Cardíaca/complicações , Hemodinâmica
10.
J Cardiovasc Transl Res ; 17(5): 1181-1192, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38767797

RESUMO

BACKGROUND: Percutaneous ventricular assist devices are increasingly relied on to maintain perfusion for cardiogenic shock patients. Optimal medical management strategies however remain uncertain from limited understanding of interventricular effects. This study analyzed the effects of pharmacologic and left-sided mechanical support on right ventricular function. METHODS: A porcine model was developed to assess biventricular function during bolus pharmacologic administration before and after left-sided percutaneous ventricular assist and in cardiogenic shock. RESULTS: The presence of mechanical support increased right ventricular load and stress with respect to the left ventricle. This shifted and exaggerated the relative effects of commonly used vasoactive agents. Furthermore, induction of cardiogenic shock led to differential pulmonary vascular and right ventricular responses. CONCLUSIONS: Left ventricular ischemia and mechanical support altered interventricular coupling. Resulting impacts of pharmacologic agents indicate differential right heart responses and sensitivity to treatments and the need for further study to optimize biventricular function in shock patients.


Assuntos
Modelos Animais de Doenças , Coração Auxiliar , Choque Cardiogênico , Função Ventricular Esquerda , Função Ventricular Direita , Animais , Choque Cardiogênico/fisiopatologia , Choque Cardiogênico/terapia , Choque Cardiogênico/diagnóstico , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos , Sus scrofa , Suínos , Fatores de Tempo , Desenho de Prótese
11.
Comput Biol Med ; 182: 109124, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39276613

RESUMO

BACKGROUND: This study seeks to quantify the effects of upper body veno-arterial extracorporeal membrane oxygenation (VA ECMO) on the anatomical distribution of oxygen delivery in the setting of hypoxic respiratory failure and provide new insights that will guide clinical use of this support strategy to bridge patients to lung transplant. METHODS: Employing a patient-specific vascular geometry and a quantitative model of oxygen transport, computational simulations were performed to determine hemodynamics and oxygen delivery in the ascending and descending aorta, left and right coronary arteries, and great vessels during upper body VA ECMO support. Oxygen content in ECMO circuit blood flow was varied while considering different degrees of lung failure severity. Using lumped parameter models to dynamically apply perfusion boundary conditions, hemodynamic parameters and oxygen content were analyzed to assess the effect of ECMO supply titration. RESULTS: The results emphasize the importance of anatomical distribution for tissue oxygen delivery in severe lung failure, with ECMO-derived flow primarily augmenting oxygen content in specific vascular beds. They also demonstrate that although cannulating the subclavian artery can enhance cerebral oxygen delivery, its ability to ensure sufficient oxygen delivery to the coronary circulation seems to be comparatively restricted. CONCLUSIONS: The oxygen delivery to a specific vascular area is primarily determined by the oxygen content in the source of perfusion. Caution is advised with upper body VA ECMO for patients with hypoxic respiratory failure and right ventricle dysfunction, due to potential coronary ischemia. Management of these patients is challenging due to disease progression and organ availability uncertainties.

12.
ASAIO J ; 70(11): 929-937, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588597

RESUMO

Venoarterial extracorporeal membrane oxygenation (VA-ECMO) shunts venous blood to the systemic arterial circulation to provide end-organ perfusion while increasing afterload that may impede left ventricle (LV) ejection and impair cardiac recovery. To maintain flow across the aortic valve and reduce risk of lethal clot formation, secondary mechanical circulatory support (MCS) devices are increasingly used despite limited understanding of their effects on cardiac function. This study sought to quantify the effects of VA-ECMO and combined with either intraaortic balloon pump (IABP) or percutaneous ventricular assist device (pVAD) on LV physiologic state and perfusion metrics in a porcine model of acute cardiogenic shock. Shock was induced through serial left anterior descending artery microbead embolization followed by initiation of VA-ECMO support and then placement of either IABP or pVAD. Hemodynamic measurements, LV pressure-volume loops, and carotid artery blood flow were evaluated before and after institution of combined MCS. The IABP decreased LV end-diastolic pressure by a peak of 15% while slightly increasing LV stroke work compared with decreases of more than 60% and 50% with the pVAD, respectively. The pVAD also demonstrated increased coronary perfusion and systemic pressure gradients in comparison to the IABP. Combined support with VA-ECMO and pVAD improves cardiovascular state in comparison to IABP.


Assuntos
Oxigenação por Membrana Extracorpórea , Coração Auxiliar , Fluxo Pulsátil , Choque Cardiogênico , Oxigenação por Membrana Extracorpórea/métodos , Animais , Suínos , Choque Cardiogênico/terapia , Choque Cardiogênico/fisiopatologia , Hemodinâmica/fisiologia , Função Ventricular Esquerda/fisiologia , Balão Intra-Aórtico/métodos , Ventrículos do Coração/fisiopatologia
13.
J Heart Lung Transplant ; 43(1): 77-84, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394023

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is increasingly relied on to bridge patients with respiratory failure to lung transplantation despite limited evidence for its use in this setting. This study evaluated longitudinal trends in practice patterns, patient characteristics, and outcomes in patients bridged with ECMO to lung transplant. METHODS: A retrospective review of all adult isolated lung transplant patients in the United Network for Organ Sharing database between 2000 and 2019 was performed. Patients were classified as "ECMO" if supported with ECMO at the time of listing or transplantation and "non-ECMO" otherwise. Linear regression was used to evaluate trends in patient demographics during the study period. Trends in mortality were evaluated using Cox proportional hazards modeling, with time period as the primary covariate (2000-2004, 2005-2009, 2010-2014, or 2015-2019) and age, time on the waitlist, and underlying diagnosis as covariates. RESULTS: The number of patients included were 40,866, of whom 1,387 (3.4%) were classified as ECMO and 39,479 (96.6%) as no ECMO. Average age and initial Lung Allocation Score increased significantly during the study period in both cohorts, but occurred at a slower rate in the ECMO population. The hazard of death was significantly lower in more recent years (2015-2019) for both the ECMO and non-ECMO cohorts (aHR (adjusted hazards ratio) 0.59, 95% confidence interval (CI) 0.37-0.96 and aHR 0.74, 95% CI 0.70-0.79) when compared to the early years (2000-2004) of the study period. CONCLUSIONS: Post-transplantation survival for patients bridged to transplantation with ECMO demonstrates ongoing improvement despite cannulation of progressively older and sicker patients.


Assuntos
Oxigenação por Membrana Extracorpórea , Transplante de Pulmão , Insuficiência Respiratória , Adulto , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Resultado do Tratamento , Estudos Retrospectivos , Insuficiência Respiratória/cirurgia , Insuficiência Respiratória/etiologia
14.
Ann Thorac Surg ; 118(2): 496-503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740080

RESUMO

BACKGROUND: We sought to characterize the association between venovenous extracorporeal membrane oxygenation (VV-ECMO) bridging duration and outcomes in patients listed for lung transplantation. METHODS: A retrospective observational study was conducted using the Organ Procurement and Transplantation Network (OPTN) database to identify adults (aged ≥18 years) who were listed for lung transplantation between 2016 and 2020 and were bridged with VV-ECMO. Patients were then stratified into groups, determined by risk inflection points, depending on the amount of time spent on pretransplant ECMO: group 1 (≤5 days), group 2 (6-10 days), group 3 (11-20 days), and group 4 (>20 days). Waiting list survival between groups was analyzed using Fine-Gray competing risk models. Posttransplant survival was compared using Cox regression. RESULTS: Of 566 eligible VV-ECMO bridge-to-lung-transplant patients (median age, 54 years, 49% men), 174 (31%), 124 (22%), 130 (23%), and 138 (24%) were categorized as groups 1, 2, 3, and 4, respectively. Overall, median duration of VV-ECMO was 10 days (interquartile range, 1-211 days), and 178 patients (31%) died on the waiting list. In the Fine-Gray model, compared with group 1, patients bridged with longer ECMO durations in group 2 (subdistribution hazard ratio [SHR], 2.95; 95% CI, 1.63-5.35), group 3 (SHR, 3.96; 95% CI, 2.36-6.63), and group 4 (SHR, 4.33; 95% CI, 2.59-7.22, all P < .001) were more likely to die on the waiting list. Of 388 patients receiving a transplant, pretransplant ECMO duration was not associated with 1-year survival in Cox regression. CONCLUSIONS: Prolonged duration of ECMO bridging was associated with worse waiting list mortality but did not impact survival after lung transplant. Prioritization of very early transplantation may improve waiting list outcomes in this population.


Assuntos
Oxigenação por Membrana Extracorpórea , Transplante de Pulmão , Listas de Espera , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Listas de Espera/mortalidade , Fatores de Tempo , Adulto , Taxa de Sobrevida/tendências , Resultado do Tratamento
15.
Int J Artif Organs ; 46(6): 381-383, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37212170

RESUMO

When COVID-19 ARDS abolishes pulmonary function, VV-ECMO can provide gas exchange. If oxygenation remains insufficient despite maximal VV-ECMO support, the addition of esmolol has been proposed. Conflict exists, however, as to the oxygenation level which should trigger beta-blocker initiation. We evaluated the effect of esmolol therapy on oxygenation and oxygen delivery in patients with negligible native lung function and various degrees of hypoxemia despite maximal VV-ECMO support. We found that, in COVID-19 patients with negligible pulmonary gas exchange, the generalized use of esmolol administration to raise arterial oxygenation by slowing heart rate and thereby match native cardiac output to maximal attainable VV ECMO flows actually reduces systemic oxygen delivery in many cases.


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/terapia , COVID-19/complicações , COVID-19/terapia , Hipóxia/tratamento farmacológico , Hipóxia/etiologia , Oxigênio
16.
Ann Thorac Surg ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37748529

RESUMO

BACKGROUND: Cannulation strategy, vasopressors, and hemolysis are important physiological factors that influence hemodynamics in extracorporeal membrane oxygenation (ECMO). We hypothesized these factors influence the discrepancy between oxygen saturation measured by pulse oximetry (Spo2) and arterial blood gas (Sao2) in patients on ECMO. METHODS: We retrospectively analyzed adults (aged ≥18 years) on venoarterial or venovenous ECMO at a tertiary academic ECMO center. Spo2-Sao2 pairs with oxygen saturation ≥70% and measured within 10 minutes were included. Occult hypoxemia was defined as Sao2 ≤88% with a time-matched Spo2 ≥92%. Adjusted linear mixed-effects modeling was used to assess the Spo2-Sao2 discrepancy with preselected demographics and time-matched laboratory variables. Vasopressor use was quantified by vasopressor dose equivalences. RESULTS: Of 139 venoarterial-ECMO and 88 venovenous-ECMO patients, we examined 20,053 Spo2-Sao2 pairs. The Spo2-Sao2 discrepancy was greater in venovenous-ECMO (1.15%) vs venoarterial-ECMO (-0.35%, P < .001). Overall, 81 patients (35%) experienced occult hypoxemia during ECMO. Occult hypoxemia was more common in venovenous-ECMO (65%) than in venoarterial-ECMO (17%, P < .001). In linear mixed-effects modeling, Spo2 underestimated Sao2 by 9.48% in central vs peripheral venoarterial-ECMO (95% CI, -17.1% to -1.79%; P = .02). Higher vasopressor dose equivalences significantly worsened the Spo2-Sao2 discrepancy (P < .001). In linear mixed-effects modeling, Spo2 overestimated Sao2 by 25.43% in single lumen-cannulated vs double lumen-cannulated venovenous-ECMO (95% CI, 5.27%-45.6%; P = .03). Higher vasopressor dose equivalences and lactate dehydrogenase levels significantly worsened the Spo2-Sao2 discrepancy (P < .001). CONCLUSIONS: Venovenous-ECMO patients are at higher risk for occult hypoxemia compared with venoarterial-ECMO. A higher vasopressor requirement and different cannulation strategies (central venoarterial-ECMO; single-lumen venovenous-ECMO) were significant factors for clinically significant Spo2-Sao2 discrepancy in both ECMO modes.

17.
JTCVS Open ; 14: 145-170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425474

RESUMO

Objective: To determine whether there is racial/ethnical discrepancy between pulse oximetry (SpO2) and oxygen saturation (SaO2) in patients receiving extracorporeal membrane oxygenation (ECMO). Methods: This was a retrospective observational study at a tertiary academic ECMO center with adults (>18 years) on venoarterial (VA) or venovenous (VV) ECMO. Datapoints were excluded if oxygen saturation ≤70% or SpO2-SaO2 pairs were not measured within 10 minutes. The primary outcome was the presence of a SpO2-SaO2 discrepancy between different races/ethnicities. Bland-Altman analyses and linear mixed-effects modeling, adjusting for prespecified covariates, were used to assess the SpO2-SaO2 discrepancy between races/ethnicities. Occult hypoxemia was defined as SaO2 <88% with a time-matched SpO2 ≥92%. Results: Of 139 patients receiving VA-ECMO and 57 patients receiving VV-ECMO, we examined 16,252 SpO2-SaO2 pairs. The SpO2-SaO2 discrepancy was greater in VV-ECMO (1.4%) versus VA-ECMO (0.15%). In VA-ECMO, SpO2 overestimated SaO2 in Asian (0.2%), Black (0.94%), and Hispanic (0.03%) patients and underestimated SaO2 in White (-0.06%) and nonspecified race (-0.80%) patients. The proportion of SpO2-SaO2 measurements considered occult hypoxemia was 70% from Black compared to 27% from White patients (P < .0001). In VV-ECMO, SpO2 overestimated SaO2 in Asian (1.0%), Black (2.9%), Hispanic (1.1%), and White (0.50%) patients and underestimated SaO2 in nonspecified race patients (-0.53%). In linear mixed-effects modeling, SpO2 overestimated SaO2 by 0.19% in Black patients (95% confidence interval, 0.045%-0.33%, P = .023). The proportion of SpO2-SaO2 measurements considered occult hypoxemia was 66% from Black compared with 16% from White patients (P < .0001). Conclusions: SpO2 overestimates SaO2 in Asian, Black, and Hispanic versus White patients, and this discrepancy was greater in VV-ECMO versus VA-ECMO, suggesting the need for physiological studies.

18.
J Heart Lung Transplant ; 42(4): 503-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36435686

RESUMO

BACKGROUND: Acute brain injury (ABI) remains common after extracorporeal cardiopulmonary resuscitation (ECPR). Using a large international multicenter cohort, we investigated the impact of peri-cannulation arterial oxygen (PaO2) and carbon dioxide (PaCO2) on ABI occurrence. METHODS: We retrospectively analyzed adult (≥18 years old) ECPR patients in the Extracorporeal Life Support Organization registry from 1/2009 through 12/2020. Composite ABI included ischemic stroke, intracranial hemorrhage (ICH), seizures, and brain death. The registry collects 2 blood gas data pre- (6 hours) and post- (24 hours) cannulation. Blood gas parameters were classified as: hypoxia (<60mm Hg), normoxia (60-119mm Hg), and mild (120-199mm Hg), moderate (200-299mm Hg), and severe hyperoxia (≥300mm Hg); hypocarbia (<35mm Hg), normocarbia (35-44mm Hg), mild (45-54mm Hg) and severe hypercarbia (≥55mm Hg). Missing values were handled using multiple imputation. Multivariable logistic regression analysis was used to assess the relationship of PaO2 and PaCO2 with ABI. RESULTS: Of 3,125 patients with ECPR intervention (median age=58, 69% male), 488 (16%) experienced ABI (7% ischemic stroke; 3% ICH). In multivariable analysis, on-ECMO moderate (aOR=1.42, 95%CI: 1.02-1.97) and severe hyperoxia (aOR=1.59, 95%CI: 1.20-2.10) were associated with composite ABI. Additionally, severe hyperoxia was associated with ischemic stroke (aOR=1.63, 95%CI: 1.11-2.40), ICH (aOR=1.92, 95%CI: 1.08-3.40), and in-hospital mortality (aOR=1.58, 95%CI: 1.21-2.06). Mild hypercarbia pre-ECMO was protective of composite ABI (aOR=0.61, 95%CI: 0.44-0.84) and ischemic stroke (aOR=0.56, 95%CI: 0.35-0.89). CONCLUSIONS: Early severe hyperoxia (≥300mm Hg) on ECMO was a significant risk factor for ABI and mortality. Careful consideration should be given in early oxygen delivery in ECPR patients who are at risk of reperfusion injury.


Assuntos
Lesões Encefálicas , Dióxido de Carbono , Reanimação Cardiopulmonar , Oxigenação por Membrana Extracorpórea , Hiperóxia , Oxigênio , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lesões Encefálicas/sangue , Lesões Encefálicas/epidemiologia , Lesões Encefálicas/etiologia , Dióxido de Carbono/sangue , Reanimação Cardiopulmonar/efeitos adversos , Reanimação Cardiopulmonar/estatística & dados numéricos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/estatística & dados numéricos , Hiperóxia/sangue , Hiperóxia/epidemiologia , Hiperóxia/etiologia , Hemorragias Intracranianas/sangue , Hemorragias Intracranianas/epidemiologia , Hemorragias Intracranianas/etiologia , AVC Isquêmico/sangue , AVC Isquêmico/epidemiologia , AVC Isquêmico/etiologia , Oxigênio/sangue , Sistema de Registros/estatística & dados numéricos , Estudos Retrospectivos , Estados Unidos/epidemiologia
19.
Chest ; 164(4): 939-951, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37054775

RESUMO

BACKGROUND: Lung transplantation (LTx) is the definitive treatment for end-stage lung failure. However, there have been no large, long-term studies on the impact of acute in-hospital stroke in this population. RESEARCH QUESTION: What are the trends, risk factors, and outcomes of acute stroke in patients undergoing LTx in the United States? STUDY DESIGN AND METHODS: We identified adult first-time isolated LTx recipients from the United Network for Organ Sharing database, which comprehensively captures every transplant in the United States, between May 2005 and December 2020. Stroke was defined as occurring at any time after LTx but prior to discharge. Multivariable logistic regression with stepwise feature elimination was used to identify risk factors for stroke. Freedom from death in patients with a stroke vs those without a stroke was evaluated with Kaplan-Meier analysis. Cox proportional hazards analysis was used to identify predictors of death at 24 months. RESULTS: Of 28,564 patients (median age, 60 years; 60% male), 653 (2.3%) experienced an acute in-hospital stroke after LTx. Median follow-up was 1.2 (stroke) and 3.0 (non-stroke) years. Annual incidence of stroke increased (1.5% in 2005 to 2.4% in 2020; P for trend = .007), as did lung allocation score and utilization of post-LTx extracorporeal membrane oxygenation (P = .01 and P < .001, respectively). Compared with those without stroke, patients with stroke had lower survival at 1 month (84% vs 98%), 12 months (61% vs 88%), and 24 months (52% vs 80%) (log-rank test, P < .001 for all). In Cox analysis, acute stroke conferred a high hazard of mortality (hazard ratio, 3.01; 95% CI, 2.67-3.41). Post-LTx extracorporeal membrane oxygenation was the strongest risk factor for stroke (adjusted OR, 2.98; 95% CI, 2.19-4.06). INTERPRETATION: Acute in-hospital stroke post-LTx has been increasing over time and is associated with markedly worse short- and long-term survival. As increasingly sicker patients undergo LTx as well as experience stroke, further research on stroke characteristics, prevention, and management strategies is warranted.

20.
Resusc Plus ; 15: 100424, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719942

RESUMO

Background: Despite the high prevalence of neurological complications and mortality associated with extracorporeal cardiopulmonary resuscitation (ECPR), neurologically-focused animal models are scarce. Our objective is to review current ECPR models investigating neurological outcomes and identify key elements for a recommended model. Methods: We searched PubMed and four other engines for animal ECPR studies examining neurological outcomes. Inclusion criteria were: animals experiencing cardiac arrest, ECPR/ECMO interventions, comparisons of short versus long cardiac arrest times, and neurological outcomes. Results: Among 20 identified ECPR animal studies (n = 442), 13 pigs, 4 dogs, and 3 rats were used. Only 10% (2/20) included both sexes. Significant heterogeneity was observed in experimental protocols. 90% (18/20) employed peripheral VA-ECMO cannulation and 55% (11/20) were survival models (median survival = 168 hours; ECMO duration = 60 minutes). Ventricular fibrillation (18/20, 90%) was the most common method for inducing cardiac arrest with a median duration of 15 minutes (IQR = 6-20). In two studies, cardiac arrests exceeding 15 minutes led to considerable mortality and neurological impairment. Among seven studies utilizing neuromonitoring tools, only four employed multimodal devices to evaluate cerebral blood flow using Transcranial Doppler ultrasound and near-infrared spectroscopy, brain tissue oxygenation, and intracranial pressure. None examined cerebral autoregulation or neurovascular coupling. Conclusions: The substantial heterogeneity in ECPR preclinical model protocols leads to limited reproducibility and multiple challenges. The recommended model includes large animals with both sexes, standardized pre-operative protocols, a cardiac arrest time between 10-15 minutes, use of multimodal methods to evaluate neurological outcomes, and the ability to survive animals after conducting experiments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa