Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 531
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2221725120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37014859

RESUMO

The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe2, that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov et al., Nat. Phys. 15, 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.

2.
Opt Express ; 31(5): 7103-7119, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859848

RESUMO

We present a new type of dual optical frequency comb source capable of scaling applications to high measurement speeds while combining high average power, ultra-low noise operation, and a compact setup. Our approach is based on a diode-pumped solid-state laser cavity which includes an intracavity biprism operated at Brewster angle to generate two spatially-separated modes with highly correlated properties. The 15-cm-long cavity uses an Yb:CALGO crystal and a semiconductor saturable absorber mirror as an end mirror to generate more than 3 W average power per comb, below 80 fs pulse duration, a repetition rate of 1.03 GHz, and a continuously tunable repetition rate difference up to 27 kHz. We carefully investigate the coherence properties of the dual-comb by a series of heterodyne measurements, revealing several important features: (1) ultra-low jitter on the uncorrelated part of the timing noise; (2) the radio frequency comb lines of the interferograms are fully resolved in free-running operation; (3) we validate that through a simple measurement of the interferograms we can determine the fluctuations of the phase of all the radio frequency comb lines; (4) this phase information is used in a post-processing routine to perform coherently averaged dual-comb spectroscopy of acetylene (C2H2) over long timescales. Our results represent a powerful and general approach to dual-comb applications by combining low noise and high power operation directly from a highly compact laser oscillator.

3.
Opt Express ; 31(10): 15888, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157679

RESUMO

This erratum corrects a typographical error in equation (8) of our published paper [Opt. Express31, 7103 (2023)10.1364/OE.479356]. All the calculations used the correct equation, so all the results and conclusions remain unchanged.

4.
Phys Rev Lett ; 131(22): 226901, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101348

RESUMO

We describe an ultrafast transition of the electronic response of optically excited transition metal ß-tungsten with few-femtosecond time resolution. The response moves from a regime where state filling of the excited carrier population around the Fermi level dominates towards localization of carriers onto the outer d orbitals. This is in contrast to previous measurements using ultrafast element-specific core-level spectroscopy enabled by attosecond transient absorption spectroscopy on transition metals such as titanium and around the transition metal atom in transition metal dichalchogenides MoTe_{2} and MoSe_{2}. This surprisingly different dynamical response for ß-tungsten can be explained by considering the electron-electron dynamics on a few-femtosecond timescale and the slower electron-phonon thermalization dynamics.

5.
Osteoarthritis Cartilage ; 30(1): 137-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547431

RESUMO

OBJECTIVE: The objectives of this study was to establish a sensitive and reproducible method to map the cartilage and subchondral bone proteomes in quantitative terms, and mine the proteomes for proteins of particular interest in the pathogenesis of osteoarthritis (OA). The horse was used as a model animal. DESIGN: Protein was extracted from articular cartilage and subchondral bone samples from three horses in triplicate by pressure cycling technology or ultrasonication. Digested proteins were analysed by data independent acquisition based mass spectrometry. Data was processed using a pre-established spectral library as reference database (FDR 1%). RESULTS: We identified to our knowledge the hitherto most comprehensive quantitative cartilage (1758 proteins) and subchondral bone (1482 proteins) proteomes in all species presented to date. Both extraction methods were sensitive and reproducible and the high consistency of the identified proteomes (>97% overlap) indicated that both methods preserved the diversity among the extracted proteins. Proteome mining revealed a substantial number of quantifiable cartilage and bone matrix proteins and proteins involved in osteogenesis and bone remodeling, including ACAN, BGN, PRELP, FMOD, COMP, ACP5, BMP3, BMP6, BGLAP, TGFB1, IGF1, ALP, MMP3, and collagens. A number of proteins, including COMP and TNN, were identified in different protein isoforms with potential unique biological roles. CONCLUSION: We have successfully developed two sensitive and reproducible non-species specific workflows enabling a comprehensive quantitative insight into the proteomes of cartilage and subchondral bone. This facilitates the prospect of investigating the molecular events at the osteochondral unit in the pathogenesis of OA in future projects.


Assuntos
Cartilagem Articular/química , Proteoma/análise , Animais , Técnicas de Química Analítica , Cavalos
6.
Opt Express ; 30(4): 5075-5094, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209478

RESUMO

Pulse trains emitted from dual-comb systems are designed to have low relative timing jitter, making them useful for many optical measurement techniques such as optical ranging and spectroscopy. However, the characterization of low-jitter dual-comb systems is challenging because it requires measurement techniques with high sensitivity. Motivated by this challenge, we developed a technique based on an optical heterodyne detection approach for measuring the relative timing jitter of two pulse trains. The method is suitable for dual-comb systems with essentially any repetition rate difference. Furthermore, the proposed approach allows for continuous and precise tracking of the sampling rate. To demonstrate the technique, we perform a detailed characterization of a single-mode-diode pumped Yb:CaF2 dual-comb laser from a free-running polarization-multiplexed cavity. This new laser produces 115-fs pulses at 160 MHz repetition rate, with 130 mW of average power in each comb. The detection noise floor for the relative timing jitter between the two pulse trains reaches 8.0 × 10-7 fs2/Hz (∼ 896 zs/Hz), and the relative root mean square (rms) timing jitter is 13 fs when integrating from 100 Hz to 1 MHz. This performance indicates that the demonstrated laser is highly compatible with practical dual-comb spectroscopy, ranging, and sampling applications. Furthermore, our results show that the relative timing noise measurement technique can characterize dual-comb systems operating in free-running mode or with finite repetition rate differences while providing a sub-attosecond resolution, which was not feasible with any other approach before.

7.
Opt Express ; 30(11): 19904-19921, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221754

RESUMO

We demonstrate a free-running single-cavity dual-comb optical parametric oscillator (OPO) pumped by a single-cavity dual-comb solid-state laser. The OPO ring cavity contains a single periodically-poled MgO-doped LiNbO3 (PPLN) crystal. Each idler beam has more than 245-mW average power at 3550 nm and 3579 nm center wavelengths (bandwidth 130 nm). The signal beams are simultaneously outcoupled with more than 220 mW per beam at 1499 nm and 1496 nm center wavelength. The nominal repetition rate is 80 MHz, while the repetition rate difference is tunable and set to 34 Hz. To evaluate the feasibility of using this type of source for dual-comb applications, we characterize the noise and coherence properties of the OPO signal beams. We find ultra-low relative intensity noise (RIN) below -158 dBc/Hz at offset frequencies above 1 MHz. A heterodyne beat note measurement with a continuous wave (cw) laser is performed to determine the linewidth of a radio-frequency (RF) comb line. We find a full-width half-maximum (FWHM) linewidth of around 400 Hz. Moreover, the interferometric measurement between the two signal beams reveals a surprising property: the center of the corresponding RF spectrum is always near zero frequency, even when tuning the pump repetition rate difference or the OPO cavity length. We explain this effect theoretically and discuss its implications for generating stable low-noise idler combs suitable for high-sensitivity mid-infrared dual-comb spectroscopy (DCS).

8.
Opt Express ; 29(22): 36321-36327, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809045

RESUMO

We present a high power optical parametric oscillator (OPO) synchronously pumped by the second-harmonic of a modelocked 1030-nm thin-disk laser (TDL) oscillator. The OPO delivers an average power of 51.1 W around degeneracy (1030 nm) with a 10.2-MHz repetition-rate. After extra-cavity dispersion compensation using dispersive mirrors, we obtain a pulse duration of 169 fs, which is 4.6× shorter than the TDL pulse duration of 770 fs. The TDL has 250 W average power, which is converted to 215 W at the second-harmonic. Hence, the OPO exhibits a high photon conversion efficiency of 47% (ratio of signal photons to 515-nm pump photons). Moreover, the OPO generates a peak power of 26.2 MW, which is very similar to the 28.0-MW peak power of the TDL. To facilitate continuous tuning around degeneracy and convenient extraction of the pump and idler beams, the OPO is operated in a noncollinear configuration. A linear cavity configuration was chosen since it offers easy alignment and straightforward cavity length tuning. To the best of our knowledge, this source has the highest average power generated by any ultrafast OPO, and the shortest pulse duration for any >5-W OPO. This result is an important step to adding wavelength tunability to high power Yb-based laser sources without the complexity of either laser or parametric amplifier systems.

9.
Opt Express ; 29(22): 36915-36925, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809090

RESUMO

Cascaded quadratic nonlinearities from phase-mismatched second-harmonic generation build the foundation for robust soliton modelocking in straight-cavity laser configurations by providing a tunable and self-defocusing nonlinearity. The frequency dependence of the loss-related part of the corresponding nonlinear response function causes a power-dependent self-frequency shift (SFS). In this paper, we develop a simple analytical model for the SFS-induced changes on the carrier-envelope offset frequency (fCEO) and experimentally investigate the static and dynamic fCEO dependence on pump power. We find good agreement with the measured dependence of fCEO on laser output power, showing a broad fCEO tuning capability from zero up to the pulse repetition rate. Moreover, we stabilize the relative intensity noise to the -157 dBc/Hz level leading to a tenfold reduction in fCEO-linewidth.

10.
Opt Express ; 29(21): 32996-33008, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809120

RESUMO

We compare the generation of high-order harmonics in the water window (283-543 eV) with 0.8-µm and 2.2-µm few-cycle lasers at a pulse repetition rate of 100 kHz. Using conventional phase matching with the 2.2-µm driver and what we attribute to nonadiabatic self-phase-matching with the 0.8-µm driver, photons up to 0.6 keV (2 nm) are generated in both cases. Special attention is paid to the understanding of the generation mechanism with the 0.8-µm laser amplifier system. We use the same beamline and pump laser for both drivers, which allows for a direct flux comparison at the two driving wavelengths. For photon energies around 280 eV, a 10-100 times higher flux is obtained from the 2.2-µm versus the 0.8-µm laser system in helium and neon. The crossover at which the 2.2-µm yields a higher flux compared to the 0.8-µm driver is found to be as high as 0.2 keV. Our study supports the common approach of using long-wavelength lasers in a phase-matched regime for efficient generation of water-window harmonics, but also shows that the more widespread 0.8-µm wavelength can be used to generate water-window harmonics with an efficiency close to the one of a less common 2.2-µm source.

11.
Opt Express ; 29(4): 5934-5946, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726125

RESUMO

Femtosecond lasers with high peak power at wavelengths above 2 µm are of high interest for generating mid-infrared (mid-IR) broadband coherent light for spectroscopic applications. Cr2+-doped ZnS/ZnSe solid-state lasers are uniquely suited since they provide an ultra-broad bandwidth in combination with watt-level average power. To date, the semiconductor saturable absorber mirror (SESAM) mode-locked Cr:ZnS(e) lasers have been severely limited in power due to the lack of suitable 2.4-µm SESAMs. For the first time, we develop novel high-performance 2.4-µm type-I and type-II SESAMs, and thereby obtain state-of-the-art mode-locking performance. The type-I InGaSb/GaSb SESAM demonstrates a low non-saturable loss (0.8%) and an ultrafast recovery time (1.9 ps). By incorporating this SESAM in a 250-MHz Cr:ZnS laser cavity, we demonstrate fundamental mode-locking at 2.37 µm with 0.8 W average power and 79-fs pulse duration. This corresponds to a peak power of 39 kW, which is the highest so far for any saturable absorber mode-locked Cr:ZnS(e) oscillator. In the same laser cavity, we could also generate 120-fs pulses at a record high average power of 1 W. A comparable laser performance is achieved using type-II InAs/GaSb SESAM as well. These results pave the way towards a new class of high-power femtosecond SESAM mode-locked oscillators operating directly above 2-µm wavelength.

12.
Opt Express ; 29(12): 18059-18069, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154073

RESUMO

Silicate bonding is a flexible bonding method that enables room-temperature bonding of many types of materials with only moderate flatness constraints. It is a promising approach for bonding components in high power laser systems, since it results in a thin and low-absorption interface layer between the bonded materials. Here we demonstrate for the first time silicate bonding of a sapphire window to a SEmiconductor Saturable Absorber Mirror (SESAM) and use the composite structure to mode-lock a high-power thin-disk laser. We characterize the fabricated devices both theoretically and experimentally and show how the thermally induced lens of the composite structure can be tuned both in magnitude and sign via the thickness of the sapphire window. We demonstrate mode-locking of a high-power thin-disk laser oscillator with these devices. The altered thermal lens allows us to increase the output power to 233 W, a 70-W-improvement compared to the results achieved with a state-of-the-art SESAM in the same cavity.

13.
Opt Express ; 29(9): 14087-14100, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985134

RESUMO

Interband cascade infrared photodetectors (ICIPs) combine interband optical transitions with fast intraband transport to achieve high-frequency and broad-wavelength operation at room temperature. Here we study the bias-dependent electronic impulse response of ICIPs with a mid-infrared synchronously pumped optical parametric oscillator (OPO). Since the OPO produces ultrashort 104-fs pulses, it is possible to probe the impulse response of the ICIP. From this impulse response, we identify two characteristic decay times, indicating the contribution of electron as well as hole carriers. A reverse bias voltage applied to the ICIP reduces both time scales and leads to an increased electrical cut-off frequency. The OPO emits up to 500 mW average power, of which up to 10 mW is directed to the ICIP in order to test its saturation characteristics under short-pulse illumination. The peak of the impulse response profile as well as the average photocurrent experience a gradual saturation behavior, and we determine the corresponding saturation powers by measuring the photo-response as a function of average power directed to the ICIP. We demonstrate that an increasing reverse bias increases the saturation power as well as the responsivity of the ICIP.

14.
J Intern Med ; 287(5): 493-513, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32012358

RESUMO

Cardiovascular disease (CVD) is the most common cause of death in industrialized countries. One underlying cause is atherosclerosis, which is a systemic disease characterized by plaques of retained lipids, inflammatory cells, apoptotic cells, calcium and extracellular matrix (ECM) proteins in the arterial wall. The biologic composition of an atherosclerotic plaque determines whether the plaque is more or less vulnerable, that is prone to rupture or erosion. Here, the ECM and tissue repair play an important role in plaque stability, vulnerability and progression. This review will focus on ECM remodelling in atherosclerotic plaques, with focus on how ECM biomarkers might predict plaque vulnerability and outcome.


Assuntos
Proteínas da Matriz Extracelular/sangue , Placa Aterosclerótica/diagnóstico , Biomarcadores/sangue , Colágeno/sangue , Glicoproteínas/sangue , Humanos , Placa Aterosclerótica/sangue , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/etiologia , Resultado do Tratamento
15.
Opt Express ; 28(14): 20954-20966, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680145

RESUMO

Quantum-dot-based semiconductor saturable absorber mirrors (SESAMs) with fast response times were developed by molecular beam epitaxy (MBE). Using quantum dots (QDs) in the absorber region of the SESAMs instead of quantum wells, enables additional degrees of freedom in the design, the control of saturation parameters and the recovery dynamics. However, if one wants to integrate such a SESAM element into semiconductor surface emitting lasers such as a mode-locked integrated external-cavity surface-emitting laser (MIXSEL), the saturable absorber layers have to withstand a longer high-temperature growth procedure for the epitaxial formation of distributed Bragg reflectors (DBR). Typically defect related SESAMs will be annealed at those growth temperatures and lose their high-speed performance. Here we present a systematic study on the growth parameters and post-growth annealing of SESAMs based on high-quality InxGa1-xAs/GaAs quantum dots (QDs) grown by MBE at growth temperatures of 450 °C or higher. The good quality enables the QDs to survive the long DBR overgrowth at 600 °C with only minimal shifts in the designed operation wavelength of 1030 nm required for growth of MIXSEL devices. The introduction of recombination centers with p-type modulation doping and additional post-growth annealing improves the absorption of the high-quality QDs. Hence, low saturation fluences < 10 µJ/cm2 and a reduction of the τ1/e recovery time to values < 2 ps can be achieved.

16.
Opt Express ; 28(26): 40145-40154, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379546

RESUMO

We present a near-infrared optical parametric chirped-pulse amplifier (OPCPA) and soft X-ray (SXR) high-harmonic generation system. The OPCPA produces few-cycle pulses at a center wavelength of 800 nm and operates at a high repetition rate of 100 kHz. It is seeded by fully programmable amplitude and phase controlled ultra-broadband pulses from a Ti:sapphire oscillator. The output from the OPCPA system was compressed to near-transform-limited 9.3-fs pulses. Fully characterized pulse compression was recorded for an average power of 22.5 W, demonstrating pulses with a peak power greater than 21 GW. Without full temporal characterization, high-power operation was achieved up to 35 W. We demonstrate that at such high repetition rates, spatiotemporally flattened pump pulses can be achieved through a cascaded second-harmonic generation approach with an efficiency of more than 70%. This combination provides a compelling OPCPA architecture for scaling the peak power of high-repetition-rate ultra-broadband systems in the near-infrared. The output of this 800-nm OPCPA system was used to generate SXR radiation reaching 190 eV photon energy through high-harmonic generation in helium.

17.
Ann Hematol ; 99(12): 2821-2829, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32734548

RESUMO

Based on centroblast frequency, follicular lymphoma (FL) is subdivided into grades 1-2, 3A, and 3B. Grade FL3A frequently coexists with FL1-2 (FL1-2-3A). Based on clinical trials, FL1-2 is treated with rituximab (R) or obinutuzumab plus bendamustine (B) or CHOP, while FL3B is treated with R-CHOP. In contrast, there are little data guiding therapy in FL3A. We present a retrospective, multicenter analysis of 95 FL3A or FL1-2-3A and 203 FL1-2 patients treated with R-CHOP or R-B first-line. R-CHOP facilitated a higher response rate (95% versus 76%) and longer overall survival (OS) (3-year OS 89% versus 73%, P = 0.008) in FL3A or FL1-2-3A, whereas the difference in progression-free survival (PFS) did not reach statistical significance. While transformation rates into aggressive lymphoma were similar between both groups, there were more additional malignancies after R-B compared with R-CHOP (6 versus 2 cases). In FL1-2, R-B achieved a higher 3-year PFS (79% versus 47%, P < 0.01), while there was no significant difference regarding OS or transformation. With the limitations of a retrospective analysis, these results suggest a benefit for R-CHOP over R-B in FL3A or FL1-2-3A. Confirmatory data from prospective clinical trials are needed.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cloridrato de Bendamustina/administração & dosagem , Linfoma Folicular/tratamento farmacológico , Rituximab/administração & dosagem , Idoso , Estudos de Coortes , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Seguimentos , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/mortalidade , Masculino , Pessoa de Meia-Idade , Gradação de Tumores/métodos , Prednisona/administração & dosagem , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Resultado do Tratamento , Vincristina/administração & dosagem
18.
Opt Express ; 27(1): 175-184, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30645365

RESUMO

We experimentally demonstrate a novel use of a spatial light modulator (SLM) for shaping ultrashort pulses in time-gated amplification systems. We show that spectral aberrations because of the device's pixelated nature can be avoided by introducing a group delay offset to the pulse via the SLM, followed by a time-gated amplification. Because of phase wrapping, a large delay offset yields a nearly-periodic grating-like phase function (or a phase grating). We show that, in this regime, the phase grating periocidity defines the group delay spectrum applied to the pulse, while the grating's amplitude defines the fraction of light that is delayed. We therefore demonstrate that a one-dimensional (1D) SLM pixel array is sufficient to control both the spectral amplitude and the phase of the amplified pulses.

19.
Opt Express ; 27(22): 31465-31474, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684382

RESUMO

We report a semiconductor saturable absorber mirror (SESAM)-modelocked thin-disk laser oscillator delivering a record 350-W average output power with 940-fs, 39-µJ pulses at 8.88-MHz repetition rate and 37-MW peak power. This oscillator is based on the Yb:YAG gain material and has a large pump spot on the disk. The cavity design includes an imaging scheme, which results in multiple reflections on the disk gain medium to enable a larger output coupling rate compared to those used in thin-disk oscillators with a single reflection on the disk. This reduces the intracavity power for a given output power, thus decreasing the stress on the intracavity components. We operate the laser in a low-pressure environment in order to limit the disk's thermal lensing and drastically reduce the nonlinearity picked up in the intracavity air medium. The combination of the imaging scheme and low-pressure operation paves the way to further power scaling of ultrafast thin-disk oscillators toward the kW milestone.

20.
Opt Express ; 27(16): 22385-22392, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510533

RESUMO

We present a phase-stabilized attosecond pump-probe beamline involving two separate infrared wavelengths for high-harmonic generation (HHG) and pump or probe. The output of a Ti:sapphire laser is partly used to generate attosecond pulses via HHG and partly to pump an optical parametric amplifier (OPA) that converts the primary Ti:sapphire radiation to a longer wavelength. The attosecond pulse and down-converted infrared are recombined after a more than 20-m-long Mach-Zehnder interferometer that spans across two laboratories and separate optical tables. We demonstrate a technique for active stabilization of the relative phase of the pump and probe to within 450 as rms, without the need for an auxiliary continuous wave (cw) laser. The long-term stability of our system is demonstrated with an attosecond photoelectron streaking experiment. While the technique has been shown for one specific OPA output wavelength (1560 nm), it should also be applicable to other OPA output wavelengths. Our setup design permits tuning of the OPA wavelength independently from the attosecond pulse generation. This approach yields new possibilities for studying the wavelength-dependence of field-driven attosecond electron dynamics in various systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa