Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 63(12): 2665-2674, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926189

RESUMO

AIMS/HYPOTHESIS: The risk for coronary artery disease (CAD) is substantially increased in type 1 diabetes and it has been postulated that insulin resistance may contribute to this risk. The current study measured insulin resistance in type 1 diabetes with vs without CAD and with a focus upon skeletal muscle, to test the hypothesis that insulin resistance is more severe in participants who have type 1 diabetes and CAD. Additionally, in type 1 diabetes, we examined the hypothesis that insulin resistance is more severe in soleus (an oxidative type muscle) vs tibialis anterior (a more glycolytic type of muscle). METHODS: Insulin resistance was measured in participants with type 1 diabetes with (n = 9, CAD+) and without CAD (n = 10, CAD-) using euglycaemic insulin infusions combined with positron emission tomography (PET) imaging of [18F]fluorodeoxyglucose (FDG) uptake into soleus and tibialis anterior skeletal muscles. Coronary artery calcium (CAC) score was quantified by electron beam tomography. RESULTS: CAD+ participants with type 1 diabetes had a >100-fold higher CAC score than did CAD- participants with type 1 diabetes but groups did not differ in HbA1c or insulin dose. During clamp studies, CAD+ and CAD- groups had similar glucose disposal but were insulin resistant compared with historical non-diabetic participants (n = 13). FDG uptake by soleus muscle was similarly reduced, overall, in individuals with type 1 diabetes with or without CAD compared with non-diabetic individuals. However, FDG uptake by tibialis anterior muscle was not reduced in CAD- participants with type 1 diabetes while in CAD+ participants with type 1 diabetes it was 75% greater (p < 0.01). Across all participants with type 1 diabetes, FDG uptake by tibialis anterior muscle correlated positively with CAC severity. CONCLUSIONS/INTERPRETATION: Our study confirms that systemic and skeletal muscle-specific insulin resistance is seen in type 1 diabetes but found that it does not appear to be more severe in the presence of CAD. There were, however, sharp differences between soleus and tibialis anterior muscles in type 1 diabetes: while insulin resistance was clearly manifest in soleus muscle, and was of equal severity in CAD+ and CAD- participants, tibialis anterior did not suggest insulin resistance in participants with type 1 diabetes, as FDG uptake by tibialis anterior correlated positively with CAC severity and was significantly increased in participants with type 1 diabetes and clinical CAD. Graphical abstract.


Assuntos
Doença da Artéria Coronariana/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Tomografia por Emissão de Pósitrons
2.
Am J Physiol Endocrinol Metab ; 316(6): E1105-E1117, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912961

RESUMO

The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health. Since food is typically consumed over limited (anabolic) periods, dietary components must be processed and stored to counterbalance the catabolic stress that occurs between meals. Herein, we contrast tissue- and pathway-specific metabolic activity in fasted and fed states. We demonstrate that knowledge of biochemical kinetics that is obtained from opposite ends of the energetic spectrum can allow mechanism-based differentiation of healthy and disease phenotypes. Rat models of type 1 and type 2 diabetes serve as case studies for probing spatial and temporal patterns of metabolic activity via [2H]water labeling. Experimental designs that capture integrative whole body metabolism, including meal-induced substrate partitioning, can support an array of research surrounding metabolic disease; the relative simplicity of the approach that is discussed here should enable routine applications in preclinical models.


Assuntos
Aminoácidos/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Jejum/metabolismo , Ácidos Graxos/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Animais , Óxido de Deutério , Modelos Animais de Doenças , Glicogênio/metabolismo , Cinética , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Redes e Vias Metabólicas , Metabolômica , Ratos , Ratos Wistar , Ratos Zucker , Análise Espaço-Temporal
3.
J Pharmacol Exp Ther ; 371(1): 45-55, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31300612

RESUMO

Metabolic dysregulation and mitochondrial dysfunction are important features of acute and chronic tissue injury across species, and human genetics and preclinical data suggest that the master metabolic regulator 5'-adenosine monophosphate-activated protein kinase (AMPK) may be an effective therapeutic target for chronic kidney disease (CKD). We have recently disclosed a pan-AMPK activator, MK-8722, that was shown to have beneficial effects in preclinical models. In this study we investigated the effects of MK-8722 in a progressive rat model of diabetic nephropathy to determine whether activation of AMPK would be of therapeutic benefit. We found that MK-8722 administration in a therapeutic paradigm is profoundly renoprotective, as demonstrated by a reduction in proteinuria (63% decrease in MK-8722 10 mg/kg per day compared with vehicle group) and a significant improvement in glomerular filtration rate (779 and 430 µl/min per gram kidney weight in MK-8722 10 mg/kg per day and vehicle group, respectively), as well as improvements in kidney fibrosis. We provide evidence that the therapeutic effects of MK-8722 may be mediated by modulation of renal mitochondrial quality control as well by attenuating fibrotic and lipotoxic mechanisms in kidney cells. MK-8722 (10 mg/kg per day compared with vehicle group) achieved modest blood pressure reduction (10 mmHg lower for mean blood pressure) and significant metabolic improvements (decreased plasma glucose, triglyceride, and body weight) that could contribute to renoprotection. These data further validate the concept that targeting metabolic dysregulation in CKD could be a potential therapeutic approach. SIGNIFICANCE STATEMENT: We demonstrate in the present study that the pharmacological activation of AMPK using a small-molecule agent provided renoprotection and improved systemic and cellular metabolism. We further indicate that modulation of renal mitochondrial quality control probably contributed to renoprotection and was distinct from the effects of enalapril. Our findings suggest that improving renal mitochondrial biogenesis and function and attenuating fibrosis and lipotoxicity by targeting key metabolic nodes could be a potential therapeutic approach in management of CKD that could complement the current standard of care.


Assuntos
Nefropatias Diabéticas/metabolismo , Hipoglicemiantes/uso terapêutico , Imidazóis/uso terapêutico , Proteínas Quinases/metabolismo , Piridinas/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Idoso , Animais , Benzimidazóis , Glicemia/metabolismo , Pressão Sanguínea , Células Cultivadas , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Taxa de Filtração Glomerular , Humanos , Hipoglicemiantes/farmacologia , Imidazóis/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Zucker , Triglicerídeos/sangue
4.
Diabetologia ; 61(5): 1142-1154, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29428999

RESUMO

AIMS/HYPOTHESIS: In this prospective case-control study we tested the hypothesis that, while long-term improvements in insulin sensitivity (SI) accompanying weight loss after Roux-en-Y gastric bypass (RYGB) would be similar in obese individuals with and without type 2 diabetes mellitus, stimulated-islet-cell insulin responses would differ, increasing (recovering) in those with diabetes but decreasing in those without. We investigated whether these changes would occur in conjunction with favourable alterations in meal-related gut hormone secretion and insulin processing. METHODS: Forty participants with type 2 diabetes and 22 participants without diabetes from the Longitudinal Assessment of Bariatric Surgery (LABS-2) study were enrolled in a separate, longitudinal cohort (LABS-3 Diabetes) to examine the mechanisms of postsurgical diabetes improvement. Study procedures included measures of SI, islet secretory response and gastrointestinal hormone secretion after both intravenous glucose (frequently-sampled IVGTT [FSIVGTT]) and a mixed meal (MM) prior to and up to 24 months after RYGB. RESULTS: Postoperatively, weight loss and SI-FSIVGTT improvement was similar in both groups, whereas the acute insulin response to glucose (AIRglu) decreased in the non-diabetic participants and increased in the participants with type 2 diabetes. The resulting disposition indices (DIFSIVGTT) increased by three- to ninefold in both groups. In contrast, during the MM, total insulin responsiveness did not significantly change in either group despite durable increases of up to eightfold in postprandial glucagon-like peptide 1 levels, and SI-MM and DIMM increased only in the diabetes group. Peak postprandial glucagon levels increased in both groups. CONCLUSIONS/INTERPRETATION: For up to 2 years following RYGB, obese participants without diabetes showed improvements in DI that approach population norms. Those with type 2 diabetes recovered islet-cell insulin secretion response yet continued to manifest abnormal insulin processing, with DI values that remained well below population norms. These data suggest that, rather than waiting for lifestyle or medical failure, RYGB is ideally considered before, or as soon as possible after, onset of type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT00433810.


Assuntos
Diabetes Mellitus/metabolismo , Derivação Gástrica , Incretinas/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Obesidade/cirurgia , Adulto , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Prospectivos , Indução de Remissão , Fatores de Tempo , Redução de Peso
5.
Am J Physiol Endocrinol Metab ; 314(4): E406-E412, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138226

RESUMO

Sitagliptin, a dipeptidyl peptidase-IV inhibitor (DPP-4), sustains activity of the incretin hormones GLP-1 and GIP and improves hyperglycemia in Type 2 diabetes mellitus (T2DM). It has however proven challenging to quantify the effect of sitagliptin on rates of insulin secretion (ISR) during a prandial challenge. The tight feedback governance of ISR by plasma glucose means that in the face of treatment-related lowering of postprandial glycemia, corresponding stimulation of ISR is lessened. We postulated that sustaining a stable level of moderate hyperglycemia before and during a meal challenge (MC) would be a platform that enables greater clarity to assess the effect of sitagliptin on ISR and an approach that could be valuable to evaluate novel targets that increase insulin secretion directly and by augmenting incretins. A hyperglycemic clamp (HGC) at 160 mg/dl was conducted in 12 healthy volunteers (without diabetes) for 6 h; 3 h into the HGC, MC was administered while maintaining stable hyperglycemia of the HGC for an additional 3 h. Modeling of C-peptide response was used to calculate ISR. In crossover design of three periods (sitagliptin twice and placebo once), the effect of sitagliptin vs. placebo on ISR and the reproducibility of the response to sitagliptin were assessed. Sitagliptin increased ISR compared with placebo by 50% and 20% during the HGC alone and the HGC-MC phases, respectively ( P < 0.001 for both). There was an associated significant treatment-based increase in circulating insulin, as well as active levels of GLP-1. Robust reproducibility of the sitagliptin-mediated ISR response was observed; the intraclass correlation value was 0.94. The findings delineate the effect of sitagliptin to stimulate insulin secretion, and these benchmark data also demonstrate that an HGC-MC can be a useful platform for interrogating therapeutic targets that could potentially modulate ISR via direct action on beta-cells as well as by augmenting release or action of incretins.


Assuntos
Técnica Clamp de Glucose/métodos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Refeições/fisiologia , Fosfato de Sitagliptina/farmacologia , Adolescente , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Via Secretória/efeitos dos fármacos , Adulto Jovem
6.
Am J Physiol Endocrinol Metab ; 315(3): E416-E424, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509438

RESUMO

Numerous studies have implicated dyslipidemia as a key factor in mediating insulin resistance. Ceramides have received special attention since their levels are inversely associated with normal insulin signaling and positively associated with factors that are involved in cardiometabolic disease. Despite the growing literature surrounding ceramide biology, there are limited data regarding the activity of ceramide synthesis and turnover in vivo. Herein, we demonstrate the ability to measure ceramide kinetics by coupling the administration of [2H]water with LC-MS/MS analyses. As a "proof-of-concept" we determined the effect of a diet-induced alteration on ceramide flux; studies also examined the effect of myriocin (a known inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis). Our data suggest that one can estimate ceramide synthesis and draw conclusions regarding the source of fatty acids; we discuss caveats in regards to method development in this area.


Assuntos
Ceramidas/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Óxido de Deutério/farmacocinética , Dieta , Inibidores Enzimáticos , Ácidos Graxos Monoinsaturados/farmacologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Traçadores Radioativos , Serina C-Palmitoiltransferase/antagonistas & inibidores , Espectrometria de Massas em Tandem
7.
Am J Physiol Endocrinol Metab ; 315(1): E63-E71, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351479

RESUMO

An increased contribution of de novo lipogenesis (DNL) may play a role in cases of dyslipidemia and adipose accretion; this suggests that inhibition of fatty acid synthesis may affect clinical phenotypes. Since it is not clear whether modulation of one step in the lipogenic pathway is more important than another, the use of tracer methods can provide a deeper level of insight regarding the control of metabolic activity. Although [2H]water is generally considered a reliable tracer for quantifying DNL in vivo (it yields a homogenous and quantifiable precursor labeling), the relatively long half-life of body water is thought to limit the ability of performing repeat studies in the same subjects; this can create a bottleneck in the development and evaluation of novel therapeutics for inhibiting DNL. Herein, we demonstrate the ability to perform back-to-back studies of DNL using [2H]water. However, this work uncovered special circumstances that affect the data interpretation, i.e., it is possible to obtain seemingly negative values for DNL. Using a rodent model, we have identified a physiological mechanism that explains the data. We show that one can use [2H]water to test inhibitors of DNL by performing back-to-back studies in higher species [i.e., treat nonhuman primates with platensimycin, an inhibitor of fatty acid synthase]; studies also demonstrate the unsuitability of [13C]acetate.


Assuntos
Óxido de Deutério/farmacologia , Ácido Palmítico/sangue , Acetatos/sangue , Adipogenia , Animais , Feminino , Meia-Vida , Lipogênese/efeitos dos fármacos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL
8.
J Lipid Res ; 58(8): 1561-1578, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28583918

RESUMO

GPR40 and GPR120 are fatty acid sensors that play important roles in glucose and energy homeostasis. GPR40 potentiates glucose-dependent insulin secretion and demonstrated in clinical studies robust glucose lowering in type 2 diabetes. GPR120 improves insulin sensitivity in rodents, albeit its mechanism of action is not fully understood. Here, we postulated that the antidiabetic efficacy of GPR40 could be enhanced by coactivating GPR120. A combination of GPR40 and GPR120 agonists in db/db mice, as well as a single molecule with dual agonist activities, achieved superior glycemic control compared with either monotherapy. Compared with a GPR40 selective agonist, the dual agonist improved insulin sensitivity in ob/ob mice measured by hyperinsulinemic-euglycemic clamp, preserved islet morphology, and increased expression of several key lipolytic genes in adipose tissue of Zucker diabetic fatty rats. Novel insights into the mechanism of action for GPR120 were obtained. Selective GPR120 activation suppressed lipolysis in primary white adipocytes, although this effect was attenuated in adipocytes from obese rats and obese rhesus, and sensitized the antilipolytic effect of insulin in rat and rhesus primary adipocytes. In conclusion, GPR120 agonism enhances insulin action in adipose tissue and yields a synergistic efficacy when combined with GPR40 agonism.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiopatologia , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Ratos , Receptores Acoplados a Proteínas G/agonistas
9.
J Biol Chem ; 291(45): 23428-23439, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621313

RESUMO

Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Mutação , Insuficiência Renal/genética , Síndrome de Wolff-Parkinson-White/genética , Animais , Apoptose , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Inflamação/genética , Inflamação/patologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Insuficiência Renal/patologia , Síndrome de Wolff-Parkinson-White/patologia
10.
Am J Physiol Endocrinol Metab ; 312(4): E235-E243, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143858

RESUMO

Insulin resistance and diabetes can develop spontaneously with obesity and aging in rhesus monkeys, highly similar to the natural history of obesity, insulin resistance, and progression to type 2 diabetes in humans. The current studies in obese rhesus were undertaken to assess hepatic and adipose contributions to systemic insulin resistance-currently, a gap in our knowledge-and to benchmark the responses to pioglitazone (PIO). A two-step hyperinsulinemic-euglycemic clamp, with tracer-based glucose flux estimates, was used to measure insulin resistance, and in an intervention study was repeated following 6 wk of PIO treatment (3 mg/kg). Compared with lean healthy rhesus, obese rhesus has a 60% reduction of glucose utilization during a high insulin infusion and markedly impaired suppression of lipolysis, which was evident at both low and high insulin infusion. However, obese dysmetabolic rhesus manifests only mild hepatic insulin resistance. Six-week PIO treatment significantly improved skeletal muscle and adipose insulin resistance (by ~50%). These studies strengthen the concept that insulin resistance in obese rhesus closely resembles human insulin resistance and indicate the value of obese rhesus for appraising new insulin-sensitizing therapeutics.


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Tiazolidinedionas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Técnica Clamp de Glucose , Hipoglicemiantes/uso terapêutico , Lipólise/fisiologia , Fígado/efeitos dos fármacos , Macaca mulatta , Músculo Esquelético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Pioglitazona , Tiazolidinedionas/uso terapêutico
11.
J Pharmacol Exp Ther ; 363(1): 80-91, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28724692

RESUMO

Drug discovery and development efforts are largely based around a common expectation, namely, that direct or indirect action on a cellular process (e.g., statin-mediated enzyme inhibition or insulin-stimulated receptor activation) will have a beneficial impact on physiologic homeostasis. To expand on this, one could argue that virtually all pharmacologic interventions attempt to influence the flow of "traffic" in a biochemical network, irrespective of disease or modality. Since stable isotope tracer kinetic methods provide a measure of traffic flow (i.e., metabolic flux), their inclusion in study designs can yield novel information regarding pathway biology; the application of such methods requires the integration of knowledge in physiology, analytical chemistry, and mathematical modeling. Herein, we review the fundamental concepts that surround the use of tracer kinetics, define basic terms, and outline guiding principles via theoretical and experimental problems. Specifically, one needs to 1) recognize the types of biochemical events that change isotopic enrichments, 2) appreciate the distinction between fractional turnover and flux rate, and 3) be aware of the subtle differences between tracer kinetics and pharmacokinetics. We hope investigators can use the framework presented here to develop applications that address their specific questions surrounding biochemical flux, and thereby gain insight into the pathophysiology of disease states, and examine pharmacodynamic mechanisms.


Assuntos
Descoberta de Drogas/métodos , Análise do Fluxo Metabólico/métodos , Animais , Humanos , Marcação por Isótopo , Isótopos/química , Água/química , Água/metabolismo
12.
Am J Physiol Endocrinol Metab ; 310(11): E865-73, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27072496

RESUMO

The graded glucose infusion (GGI) examines insulin secretory response patterns to continuously escalating glycemia. The current study series sought to more fully appraise its performance characteristics. Key questions addressed were comparison of the GGI to the hyperglycemic clamp (HGC), comparison of insulin secretory response patterns across three volunteer populations known to differ in ß-cell function (healthy nonobese, obese nondiabetic, and type 2 diabetic), and characterization of effects of known insulin secretagogues in the context of a GGI. Insulin secretory response was measured as changes in insulin, C-peptide, insulin secretion rates (ISR), and ratio of ISR to prevailing glucose (ISR/G). The GGI correlated well with the HGC (r = 0.72 for ISR/G, P < 0.01). The insulin secretory response in type 2 diabetes (T2DM) was significantly blunted (P < 0.001), whereas it was significantly increased in obese nondiabetics compared with healthy nonobese (P < 0.001). Finally, robust (P < 0.001 over placebo) pharmacological effects were observed in T2DM and healthy nonobese volunteers. Collectively, the findings of this investigational series bolster confidence that the GGI has solid attributes for assessing insulin secretory response to glucose across populations and pharmacology. Notably, the coupling of insulin secretory response to glycemic changes was distinctly and uniformly linear across populations and in the context of insulin secretagogues. (Clinical Trial Registration Nos. NCT00782418, NCT01055340, NCT01373450).


Assuntos
Diabetes Mellitus/metabolismo , Teste de Tolerância a Glucose/métodos , Glucose/administração & dosagem , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/sangue , Método Duplo-Cego , Glucose/farmacocinética , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Modelos Lineares , Modelos Biológicos , Dinâmica não Linear , Efeito Placebo , Taxa de Sobrevida
13.
Am J Physiol Endocrinol Metab ; 311(6): E911-E921, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27651111

RESUMO

Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer. The ability to then reliably estimate glucose flux would require attention toward setting a schedule for collecting samples and choosing a distribution volume. For example, glucose production can be calculated by multiplying the fractional turnover rate by the pool size. We have taken a step-wise approach to examine the potential of using an intraperitoneal tracer administration in rat and mouse models. First, we compared the kinetics of [U-13C]glucose following either an intravenous or an intraperitoneal injection. Second, we tested whether the intraperitoneal method could detect a pharmacological manipulation of glucose production. Finally, we contrasted a potential application of the intraperitoneal method against the glucose-insulin clamp. We conclude that it is possible to 1) quantify glucose production using an intraperitoneal injection of tracer and 2) derive a "glucose production index" by coupling estimates of basal glucose production with measurements of fasting insulin concentration; this yields a proxy for clamp-derived assessments of insulin sensitivity of endogenous production.


Assuntos
Glicemia/metabolismo , Indicadores e Reagentes , Animais , Glicemia/efeitos dos fármacos , Isótopos de Carbono , Dieta Hiperlipídica , Feminino , Técnica Clamp de Glucose , Hipoglicemiantes/farmacologia , Injeções Intraperitoneais , Injeções Intravenosas , Resistência à Insulina , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Rosiglitazona , Tiazolidinedionas/farmacologia
14.
J Lipid Res ; 56(11): 2183-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373568

RESUMO

Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.


Assuntos
Colesterol/sangue , Pirazóis/farmacologia , Receptores de Glucagon/antagonistas & inibidores , beta-Alanina/análogos & derivados , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipercolesterolemia/induzido quimicamente , Concentração Inibidora 50 , Absorção Intestinal , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pirazóis/efeitos adversos , beta-Alanina/efeitos adversos , beta-Alanina/farmacologia
15.
Am J Physiol Endocrinol Metab ; 309(8): E727-35, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26330343

RESUMO

Two groups recently used different tracer methods to quantify liver-specific flux rates. The studies had a similar goal, i.e., to characterize mitochondrial oxidative function. These efforts could have a direct impact on our ability to understand metabolic abnormalities that affect the pathophysiology of fatty liver and allow us to examine mechanisms surrounding potential therapeutic interventions. Briefly, one method couples the continuous infusion of [(13)C]acetate with direct real-time measurements of [(13)C]glutamate labeling in liver; the other method administers [(13)C]propionate, in combination with other tracers, and subsequently measures the (13)C labeling of plasma glucose and/or acetaminophen-glucuronide. It appears that a controversy has arisen, since the respective methods yielded different estimates of the anaplerotic/TCA flux ratio (VANA:VTCA) in "control" subjects, i.e., the [(13)C]acetate- and [(13)C]propionate-derived VANA:VTCA flux ratios appear to be ∼1.4 and ∼5, respectively. While the deep expertise in the respective groups makes it somewhat trivial for each to perform the tracer studies, the data interpretation is inherently difficult. The current perspective was undertaken to examine potential factors that could account for or contribute to the apparent differences. Attention was directed toward 1) matters of practicality, 2) issues surrounding stoichiometry, and 3) hidden assumptions. We believe that the [(13)C]acetate method has certain weaknesses that limit its utility; in contrast, the [(13)C]propionate method likely yields a more correct answer. We hope our discussion will help clarify the differences in the recent reports. Presumably this will be of interest to investigators who are considering tracer-based studies of liver metabolism.


Assuntos
Acetatos , Ciclo do Ácido Cítrico , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Análise do Fluxo Metabólico/métodos , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Propionatos , Acetaminofen/análogos & derivados , Acetaminofen/metabolismo , Glicemia/metabolismo , Isótopos de Carbono , Ácido Glutâmico/metabolismo , Humanos , Análise do Fluxo Metabólico/normas , Mitocôndrias/metabolismo , Traçadores Radioativos
16.
Am J Physiol Endocrinol Metab ; 309(2): E115-21, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26015435

RESUMO

The synthesis of various molecules can be estimated by measuring the incorporation of a labeled precursor into a product of interest. Unfortunately, a central problem in many studies has been an inability to estimate the intracellular dilution of the precursor and therein correctly calculate the synthesis of the product; it is generally assumed that measuring the true product labeling is straightforward. We initiated a study to examine liver collagen synthesis and identified an apparent problem with assumptions regarding measurements of the product labeling. Since it is well known that collagen production is relatively slow, we relied on the use of [(2)H]H2O labeling (analogous to a primed infusion) and sampled animals over the course of 16 days. Although the water labeling (the precursor) remained stable and we observed the incorporation of labeled amino acids into collagen, the asymptotic protein labeling was considerably lower than what would be expected based on the precursor labeling. Although this observation is not necessarily surprising (i.e., one might expect that a substantial fraction of the collagen pool would appear "inert" or turn over at a very slow rate), its implications are of interest in certain areas. Herein, we discuss a novel situation in which tracers are used to quantify rates of flux under conditions where a product may not undergo complete replacement. We demonstrate how heterogeneity in the product pool can lead one to the wrong conclusions regarding estimates of flux, and we outline an approach that may help to minimize errors surrounding data interpretation.


Assuntos
Colágeno/metabolismo , Deutério/farmacocinética , Marcação por Isótopo/métodos , Biossíntese de Proteínas , Aminoácidos/metabolismo , Animais , Humanos , Indicadores e Reagentes/farmacocinética , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Transporte Proteico , Água/metabolismo
17.
Cardiovasc Diabetol ; 14: 29, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25888997

RESUMO

BACKGROUND: Glucagon-like peptide 1 (GLP-1) analogs and dipeptidyl peptidase-4 (DPP4) inhibitors are a newer class of antidiabetics named as incretin-based therapy. In addition to the homeostatic control of glucose, the incretin-based therapy has shown beneficial effects on the cardiovascular system in preclinical and clinical studies. However, there is limited information on their renal effects. To this end, we assessed the acute hemodynamic and renal effects of a GLP-1 analog, Liraglutide, and a DPP4 inhibitor, MK-0626. METHODS: Experiments were performed in anesthetized male Sprague-Dawley rats. Three ascending doses of Liraglutide (3, 9, and 27 nmol/kg/h) or MK-0626 (1 mg/kg) with or without GLP-1 peptide (2.4, 4.8, or 9.6 pmol/kg/min) were administered. Blood pressure (BP) and heart rate (HR) were recorded from an indwelling catheter. Glomerular filtration rate (GFR) and renal blood flow (RBF) were assessed by inulin and para-aminohippurate clearance, respectively. Renal excretory function was assessed in metabolic studies. RESULTS: Both Liraglutide and MK-0626 plus GLP-1 evoked significant diuretic and natriuretic responses and increased GFR. MK-0626 alone increased RBF. Liraglutide at 27 nmol//kg/h and MK-0626 plus GLP-1 at 9.6 pmol/kg/min also increased HR, whereas BP was not affected. CONCLUSION: The results of the present study demonstrated that a GLP-1 analog and a DPP4 inhibitor may have beneficial effects on renal sodium and water handling. Additionally, the DPP4 inhibitor, MK-0626, favorably affects renal hemodynamics by increasing RBF. However, exceedingly high levels of GLP-1 receptor agonists may adversely affect the cardiovascular system in acute setting, as demonstrated by an acute increase in HR.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Incretinas/farmacologia , Liraglutida/farmacologia , Circulação Renal/efeitos dos fármacos , Triazóis/farmacologia , Animais , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hemodinâmica/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
18.
Curr Ther Res Clin Exp ; 77: 83-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26543510

RESUMO

BACKGROUND: Insulin resistance heightens the risk for type 2 diabetes mellitus and cardiovascular disease. Amelioration of insulin resistance may reduce this risk. The thiazolidinedone class of insulin sensitizers improves insulin action in individuals with insulin-resistant diabetes and nondiabetic individuals. However, there are few reports on the time of onset of such effects independent of reversal of glucotoxicity. OBJECTIVE: The goal of our study was to test whether the thiazolidinedione pioglitazone has prominent early metabolic effects that can be detected in an obese, nondiabetic, insulin-resistant population. METHODS: We conducted a randomized, double-blind, placebo-controlled, parallel-group trial in men with nondiabetic insulin resistance using a hyperinsulinemic euglycemic clamp technique (at low and high doses of insulin at 10 and 40 mU/m(2)/min, respectively). The patients were given 30 mg daily oral pioglitazone or placebo for 28 days. Patients underwent a baseline clamp before initiation of treatment, and again at 14 and 28 days of treatment. RESULTS: Compared with placebo, under high-dose hyperinsulinemia, pioglitazone led to significant increases in glucose disposal rates (GDR) of 1.29 mg/kg/min (90% CI, 0.43-2.15; 39%; P=0.008) that were detectable at 2 weeks of treatment and persisted at 4 weeks of treatment. Under low-dose hyperinsulinemia, significant increases in GDR of 0.40 mg/kg/min (90% CI, 0.17-0.62; 95%; P=0.003) were observed at 4 weeks of treatment. These responses were accompanied by robust suppression of free fatty acids under hyperinsulinemic conditions, and by significant increases in circulating basal total adiponectin at 2 and 4 weeks of treatment. CONCLUSIONS: Significant changes in insulin action across multiple insulin-sensitive tissues can be detected within 2 weeks of initiation of insulin-sensitizing therapy with pioglitazone in obese patients with nondiabetic insulin resistance. ClinicalTrials.gov identifier: NCT01115712.

19.
Nat Med ; 12(4): 425-32, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582918

RESUMO

The mechanisms underlying leptin resistance are still being defined. We report here the presence in human blood of several serum leptin-interacting proteins (SLIPs), isolated by leptin-affinity chromatography and identified by mass spectrometry and immunochemical analysis. We confirmed that one of the major SLIPs is C-reactive protein (CRP). In vitro, human CRP directly inhibits the binding of leptin to its receptors and blocks its ability to signal in cultured cells. In vivo, infusion of human CRP into ob/ob mice blocked the effects of leptin upon satiety and weight reduction. In mice that express a transgene encoding human CRP, the actions of human leptin were completely blunted. We also found that physiological concentrations of leptin can stimulate expression of CRP in human primary hepatocytes. Recently, human CRP has been correlated with increased adiposity and plasma leptin. Thus, our results suggest a potential mechanism contributing to leptin resistance, by which circulating CRP binds to leptin and attenuates its physiological functions.


Assuntos
Proteína C-Reativa/metabolismo , Leptina/metabolismo , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Proteína C-Reativa/farmacologia , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Interleucina-6/farmacologia , Leptina/sangue , Leptina/farmacologia , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Testes de Precipitina , Proteínas de Ligação a RNA , Ratos , Transgenes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa