Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 20(3): 375-386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864200

RESUMO

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Assuntos
Benchmarking , Proteômica , Benchmarking/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Proteoma/análise
2.
J Proteome Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713017

RESUMO

Single-cell proteomics is a powerful approach to precisely profile protein landscapes within individual cells toward a comprehensive understanding of proteomic functions and tissue and cellular states. The inherent challenges associated with limited starting material demand heightened analytical sensitivity. Just as advances in sample preparation maximize the amount of material that makes it from the cell to the mass spectrometer, we strive to maximize the number of ions that make it from ion source to the detector. In isobaric tagging experiments, limited reporter ion generation limits quantitative accuracy and precision. The combination of infrared photoactivation and ion parking circumvents the m/z dependence inherent in HCD, maximizing reporter generation and avoiding unintended degradation of TMT reporter molecules in infrared-tandem mass tags (IR-TMT). The method was applied to single-cell human proteomes using 18-plex TMTpro, resulting in 4-5-fold increases in reporter signal compared to conventional SPS-MS3 approaches. IR-TMT enables faster duty cycles, higher throughput, and increased peptide identification and quantification. Comparative experiments showcase 4-5-fold lower injection times for IR-TMT, providing superior sensitivity without compromising accuracy. In all, IR-TMT enhances the dynamic range of proteomic experiments and is compatible with gas-phase fractionation and real-time searching, promising increased gains in the study of cellular heterogeneity.

3.
Anal Chem ; 96(26): 10534-10542, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38915247

RESUMO

Peptide separations that combine high sensitivity, robustness, peak capacity, and throughput are essential for extending bottom-up proteomics to smaller samples including single cells. To this end, we have developed a multicolumn nanoLC system with offline gradient generation. One binary pump generates gradients in an accelerated fashion to support multiple analytical columns, and a single trap column interfaces with all analytical columns to reduce required maintenance and simplify troubleshooting. A high degree of parallelization is possible, as one sample undergoes separation while the next sample plus its corresponding mobile phase gradient are transferred into the storage loop and a third sample is loaded into a sample loop. Selective offline elution from the trap column into the sample loop prevents salts and hydrophobic species from entering the analytical column, thus greatly enhancing column lifetime and system robustness. With this design, samples can be analyzed as fast as every 20 min at a flow rate of just 40 nL/min with close to 100% MS utilization time and continuously for as long as several months without column replacement. We utilized the system to analyze the proteomes of single cells from a multiple myeloma cell line upon treatment with the immunomodulatory imide drug lenalidomide.


Assuntos
Proteoma , Análise de Célula Única , Humanos , Proteoma/análise , Nanotecnologia , Proteômica/métodos , Cromatografia Líquida/métodos , Linhagem Celular Tumoral , Lenalidomida/farmacologia , Talidomida/farmacologia , Talidomida/análogos & derivados , Mieloma Múltiplo/metabolismo
4.
Nat Methods ; 18(6): 604-617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099939

RESUMO

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.


Assuntos
Análise de Sequência de Proteína/métodos , Imagem Individual de Molécula/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Proteínas/química , Proteômica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
5.
Mol Cell Proteomics ; 21(7): 100254, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654359

RESUMO

All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos
6.
J Proteome Res ; 22(6): 1589-1602, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37093777

RESUMO

We compared three cell isolation and two proteomic sample preparation methods for single-cell and near-single-cell analysis. Whole blood was used to quantify hemoglobin (Hb) and glycated-Hb (gly-Hb) in erythrocytes using targeted mass spectrometry and stable isotope-labeled standard peptides. Each method differed in cell isolation and sample preparation as follows: 1) FACS and automated preparation in one-pot for trace samples (autoPOTS); 2) limited dilution via microscopy and a novel rapid one-pot sample preparation method that circumvented the need for the solid-phase extraction, low-volume liquid handling instrumentation and humidified incubation chamber; and 3) CellenONE-based cell isolation and the same one-pot sample preparation method used for limited dilution. Only the CellenONE device routinely isolated single-cells from which Hb was measured to be 540-660 amol per red blood cell (RBC), which was comparable to the calculated SI reference range for mean corpuscular hemoglobin (390-540 amol/RBC). FACSAria sorter and limited dilution could routinely isolate single-digit cell numbers, to reliably quantify CMV-Hb heterogeneity. Finally, we observed that repeated measures, using 5-25 RBCs obtained from N = 10 blood donors, could be used as an alternative and more efficient strategy than single RBC analysis to measure protein heterogeneity, which revealed multimodal distribution, unique for each individual.


Assuntos
Hemoglobinas , Proteômica , Proteômica/métodos , Hemoglobinas/análise , Hemoglobinas Glicadas , Eritrócitos/química , Espectrometria de Massas
7.
Anal Chem ; 95(20): 8020-8027, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167627

RESUMO

Recent developments in mass spectrometry-based single-cell proteomics (SCP) have resulted in dramatically improved sensitivity, yet the relatively low measurement throughput remains a limitation. Isobaric and isotopic labeling methods have been separately applied to SCP to increase throughput through multiplexing. Here we combined both forms of labeling to achieve multiplicative scaling for higher throughput. Two-plex stable isotope labeling of amino acids in cell culture (SILAC) and isobaric tandem mass tag (TMT) labeling enabled up to 28 single cells to be analyzed in a single liquid chromatography-mass spectrometry (LC-MS) analysis, in addition to carrier, reference, and negative control channels. A custom nested nanowell chip was used for nanoliter sample processing to minimize sample losses. Using a 145-min total LC-MS cycle time, ∼280 single cells were analyzed per day. This measurement throughput could be increased to ∼700 samples per day with a high-duty-cycle multicolumn LC system producing the same active gradient. The labeling efficiency and achievable proteome coverage were characterized for multiple analysis conditions.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Marcação por Isótopo
8.
Analyst ; 148(15): 3466-3475, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395315

RESUMO

Although single cell RNA-seq has had a tremendous impact on biological research, a corresponding technology for unbiased mass spectrometric analysis of single cells has only recently become available. Significant technological breakthroughs including miniaturized sample handling have enabled proteome profiling of single cells. Furthermore, trapped ion mobility spectrometry (TIMS) in combination with parallel accumulation-serial fragmentation operated in data-dependent acquisition mode (DDA-PASEF) allowed improved proteome coverage from low-input samples. It has been demonstrated that modulating the ion flux in TIMS affects the overall performance of proteome profiling. However, the effect of TIMS settings on the analysis of low-input samples has been less investigated. Thus, we sought to optimize the conditions of TIMS with regard to ion accumulation/ramp times and ion mobility range for low-input samples. We observed that an ion accumulation time of 180 ms and monitoring a narrower ion mobility range from 0.7 to 1.3 V s cm-2 resulted in a substantial gain in the depth of proteome coverage and in detecting proteins with low abundance. We used these optimized conditions for proteome profiling of sorted human primary T cells, which yielded an average of 365, 804, 1116, and 1651 proteins from single, five, ten, and forty T cells, respectively. Notably, we demonstrated that the depth of proteome coverage from a low number of cells was sufficient to delineate several essential metabolic pathways and the T cell receptor signaling pathway. Finally, we showed the feasibility of detecting post-translational modifications including phosphorylation and acetylation from single cells. We believe that such an approach could be applied to label-free analysis of single cells obtained from clinically relevant samples.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Proteômica/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional
9.
Mol Cell Proteomics ; 20: 100085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33915259

RESUMO

Single-cell measurements are uniquely capable of characterizing cell-to-cell heterogeneity and have been used to explore the large diversity of cell types and physiological functions present in tissues and other complex cell assemblies. An intriguing application of single-cell proteomics is the characterization of proteome dynamics during biological transitions, like cellular differentiation or disease progression. Time-course experiments, which regularly take measurements during state transitions, rely on the ability to detect dynamic trajectories in a data series. However, in a single-cell proteomics experiment, cell-to-cell heterogeneity complicates the confident identification of proteome dynamics as measurement variability may be higher than expected. Therefore, a critical question for these experiments is how many data points need to be acquired during the time course to enable robust statistical analysis. We present here an analysis of the most important variables that affect statistical confidence in the detection of proteome dynamics: fold change, measurement variability, and the number of cells measured during the time course. Importantly, we show that datasets with less than 16 measurements across the time domain suffer from low accuracy and also have a high false-positive rate. We also demonstrate how to balance competing demands in experimental design to achieve a desired result.


Assuntos
Proteômica/métodos , Animais , Linhagem Celular , Camundongos , Tamanho da Amostra , Análise de Célula Única
10.
Angew Chem Int Ed Engl ; 62(34): e202303415, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37380610

RESUMO

We combined efficient sample preparation and ultra-low-flow liquid chromatography with a newly developed data acquisition and analysis scheme termed wide window acquisition (WWA) to quantify >3,000 proteins from single cells in rapid label-free analyses. WWA employs large isolation windows to intentionally co-isolate and co-fragment adjacent precursors along with the selected precursor. Optimized WWA increased the number of MS2-identified proteins by ≈40 % relative to standard data-dependent acquisition. For a 40-min LC gradient operated at ≈15 nL/min, we identified an average of 3,524 proteins per single-cell-sized aliquot of protein digest. Reducing the active gradient to 20 min resulted in a modest 10 % decrease in proteome coverage. Using this platform, we compared protein expression between single HeLa cells having an essential autophagy gene, atg9a, knocked out, with their isogenic WT parental line. Similar proteome coverage was observed, and 268 proteins were significantly up- or downregulated. Protein upregulation primarily related to innate immunity, vesicle trafficking and protein degradation.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Células HeLa , Proteômica/métodos , Cromatografia Líquida/métodos
11.
J Proteome Res ; 21(3): 713-720, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34860515

RESUMO

Multimodal mass spectrometry imaging (MSI) is a critical technique used for deeply investigating biological systems by combining multiple MSI platforms in order to gain the maximum molecular information about a sample that would otherwise be limited by a single analytical technique. The aim of this work was to create a multimodal MSI approach that measures metabolomic and proteomic data from a single biological organ by combining infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) for metabolomic MSI and nanodroplet processing in one pot for trace samples (nanoPOTS) LC-MS/MS for spatially resolved proteome profiling. Adjacent tissue sections of rat brain were analyzed by each platform, and each data set was individually analyzed using previously optimized workflows. IR-MALDESI data sets were annotated by accurate mass and spectral accuracy using HMDB, METLIN, and LipidMaps databases, while nanoPOTS-LC-MS/MS data sets were searched against the rat proteome using the Sequest HT algorithm and filtered with a 1% FDR. The combined data revealed complementary molecular profiles distinguishing the corpus callosum against other sampled regions of the brain. A multiomic pathway integration showed a strong correlation between the two data sets when comparing average abundances of metabolites and corresponding enzymes in each brain region. This work demonstrates the first steps in the creation of a multimodal MSI technique that combines two highly sensitive and complementary imaging platforms. Raw data files are available in METASPACE (https://metaspace2020.eu/project/pace-2021) and MassIVE (identifier: MSV000088211).


Assuntos
Proteoma , Proteômica , Animais , Encéfalo/diagnóstico por imagem , Cromatografia Líquida/métodos , Ratos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem
12.
J Proteome Res ; 21(1): 182-188, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34920664

RESUMO

The goal of proteomics is to identify and quantify the complete set of proteins in a biological sample. Single-cell proteomics specializes in the identification and quantitation of proteins for individual cells, often used to elucidate cellular heterogeneity. The significant reduction in ions introduced into the mass spectrometer for single-cell samples could impact the features of MS2 fragmentation spectra. As all peptide identification software tools have been developed on spectra from bulk samples and the associated ion-rich spectra, the potential for spectral features to change is of great interest. We characterize the differences between single-cell spectra and bulk spectra by examining three fundamental spectral features that are likely to affect peptide identification performance. All features show significant changes in single-cell spectra, including the loss of annotated fragment ions, blurring signal and background peaks due to diminishing ion intensity, and distinct fragmentation pattern, compared to bulk spectra. As each of these features is a foundational part of peptide identification algorithms, it is critical to adjust algorithms to compensate for these losses.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Algoritmos , Peptídeos/química , Software
13.
J Proteome Res ; 21(9): 2237-2245, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916235

RESUMO

Formalin-fixed, paraffin-embedded (FFPE) tissues are banked in large repositories to cost-effectively preserve valuable specimens for later study. With the rapid growth of spatial proteomics, FFPE tissues can serve as a more accessible alternative to more commonly used frozen tissues. However, extracting proteins from FFPE tissues is challenging due to cross-links formed between proteins and formaldehyde. Here, we have adapted the nanoPOTS sample processing workflow, which was previously applied to single cells and fresh-frozen tissues, to profile protein expression from FFPE tissues. Following the optimization of extraction solvents, times, and temperatures, we identified an average of 1312 and 3184 high-confidence master proteins from 10 µm thick FFPE-preserved mouse liver tissue squares having lateral dimensions of 50 and 200 µm, respectively. The observed proteome coverage for FFPE tissues was on average 88% of that achieved for similar fresh-frozen tissues. We also characterized the performance of our fully automated sample preparation and analysis workflow, termed autoPOTS, for FFPE spatial proteomics. This modified nanodroplet processing in one pot for trace samples (nanoPOTS) and fully automated processing in one pot for trace sample (autoPOTS) workflows provides the greatest coverage reported to date for high-resolution spatial proteomics applied to FFPE tissues. Data are available via ProteomeXchange with identifier PXD029729.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Formaldeído , Camundongos , Inclusão em Parafina/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Fixação de Tecidos
14.
Anal Chem ; 94(15): 6017-6025, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35385261

RESUMO

Single-cell proteomics (SCP) has great potential to advance biomedical research and personalized medicine. The sensitivity of such measurements increases with low-flow separations (<100 nL/min) due to improved ionization efficiency, but the time required for sample loading, column washing, and regeneration in these systems can lead to low measurement throughput and inefficient utilization of the mass spectrometer. Herein, we developed a two-column liquid chromatography (LC) system that dramatically increases the throughput of label-free SCP using two parallel subsystems to multiplex sample loading, online desalting, analysis, and column regeneration. The integration of MS1-based feature matching increased proteome coverage when short LC gradients were used. The high-throughput LC system was reproducible between the columns, with a 4% difference in median peptide abundance and a median CV of 18% across 100 replicate analyses of a single-cell-sized peptide standard. An average of 621, 774, 952, and 1622 protein groups were identified with total analysis times of 7, 10, 15, and 30 min, corresponding to a measurement throughput of 206, 144, 96, and 48 samples per day, respectively. When applied to single HeLa cells, we identified nearly 1000 protein groups per cell using 30 min cycles and 660 protein groups per cell for 15 min cycles. We explored the possibility of measuring cancer therapeutic targets with a pilot study comparing the K562 and Jurkat leukemia cell lines. This work demonstrates the feasibility of high-throughput label-free single-cell proteomics.


Assuntos
Peptídeos , Proteoma , Cromatografia Líquida/métodos , Células HeLa , Humanos , Peptídeos/análise , Projetos Piloto , Proteoma/análise
15.
Mol Cell Proteomics ; 19(11): 1739-1748, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32847821

RESUMO

MS-based proteome profiling has become increasingly comprehensive and quantitative, yet a persistent shortcoming has been the relatively large samples required to achieve an in-depth measurement. Such bulk samples, typically comprising thousands of cells or more, provide a population average and obscure important cellular heterogeneity. Single-cell proteomics capabilities have the potential to transform biomedical research and enable understanding of biological systems with a new level of granularity. Recent advances in sample processing, separations and MS instrumentation now make it possible to quantify >1000 proteins from individual mammalian cells, a level of coverage that required an input of thousands of cells just a few years ago. This review discusses important factors and parameters that should be optimized across the workflow for single-cell and other low-input measurements. It also highlights recent developments that have advanced the field and opportunities for further development.


Assuntos
Proteômica/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Células Cultivadas , Cromatografia Líquida , Humanos , Espectrometria de Massas , Proteoma/metabolismo , Proteômica/instrumentação
16.
J Proteome Res ; 20(5): 2195-2205, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33491460

RESUMO

Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies offers researchers the ability to deeply profile smaller numbers of cells that are more likely to be encountered in clinical settings. Herein a recently developed microscale proteomic method, microdroplet processing in one pot for trace samples (microPOTS), was employed to identify proteomic changes in ∼200 Barrett's esophageal cells following physiologic and radiation stress exposure. From this small population of cells, microPOTS confidently identified >1500 protein groups, and achieved a high reproducibility with a Pearson's correlation coefficient value of R > 0.9 and over 50% protein overlap from replicates. A Barrett's cell line model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g., ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3, S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared to the untreated set. These results demonstrate the ability of microPOTS to routinely identify and quantify differentially expressed proteins from limited numbers of cells.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Esôfago de Barrett/genética , Linhagem Celular , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Humanos , Mucoproteínas , Proteínas Oncogênicas , Proteômica , Reprodutibilidade dos Testes , Proteínas de Ligação a Tacrolimo , Enzimas de Conjugação de Ubiquitina
17.
Gastroenterology ; 159(2): 453-466.e1, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417404

RESUMO

Single cells are the building blocks of tissue systems that determine organ phenotypes, behaviors, and functions. Understanding the differences between cell types and their activities might provide us with insights into normal tissue physiology, development of disease, and new therapeutic strategies. Although -omic level single-cell technologies are a relatively recent development that have been used only in research settings, these approaches might eventually be used in the clinic. We review the prospects of applying single-cell genome, transcriptome, epigenome, proteome, and metabolome analyses to gastroenterology and hepatology research. Combining data from multi-omic platforms coupled to rapid technological development could lead to new diagnostic, prognostic, and therapeutic approaches.


Assuntos
Pesquisa Biomédica/métodos , Gastroenteropatias/diagnóstico , Trato Gastrointestinal/fisiologia , Análise de Célula Única , Gastroenteropatias/etiologia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/terapia , Trato Gastrointestinal/citologia , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Metabolômica/métodos , Proteômica/métodos
18.
Anal Chem ; 93(3): 1658-1666, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33352054

RESUMO

Recent advances in sample preparation and analysis have enabled direct profiling of protein expression in single mammalian cells and other trace samples. Several techniques to prepare and analyze low-input samples employ custom fluidics for nanoliter sample processing and manual sample injection onto a specialized separation column. While being effective, these highly specialized systems require significant expertise to fabricate and operate, which has greatly limited implementation in most proteomic laboratories. Here, we report a fully automated platform termed autoPOTS (automated preparation in one pot for trace samples) that uses only commercially available instrumentation for sample processing and analysis. An unmodified, low-cost commercial robotic pipetting platform was utilized for one-pot sample preparation. We used low-volume 384-well plates and periodically added water or buffer to the microwells to compensate for limited evaporation during sample incubation. Prepared samples were analyzed directly from the well plate with a commercial autosampler that was modified with a 10-port valve for compatibility with 30 µm i.d. nanoLC columns. We used autoPOTS to analyze 1-500 HeLa cells and observed only a moderate reduction in peptide coverage for 150 cells and a 24% reduction in coverage for single cells compared to our previously developed nanoPOTS platform. To evaluate clinical feasibility, we identified an average of 1095 protein groups from ∼130 sorted B or T lymphocytes. We anticipate that the straightforward implementation of autoPOTS will make it an attractive option for low-input and single-cell proteomics in many laboratories.


Assuntos
Automação , Proteoma/análise , Proteômica , Cromatografia Líquida , Células HeLa , Humanos , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
19.
Anal Chem ; 92(7): 4711-4715, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32208662

RESUMO

In many areas of application, key objectives of chemical separation and analysis are to minimize the sample quantity while maximizing the chemical information obtained. Increasing measurement sensitivity is especially critical for proteomics research, especially when processing trace samples and where multiple measurements are desired. A rich collection of technologies has been developed, but the resulting sensitivity remains insufficient for achieving in-depth coverage of proteomic samples as small as single cells. Here, we combine picoliter-scale liquid chromatography (picoLC) with mass spectrometry (MS) to address this issue. The picoLC employs a 2-µm-i.d. open tubular column to reduce the sample input needed to greatly increase the sensitivity achieved using electrospray ionization (ESI) with MS. With this picoLC-MS system, we show that we can identify ∼1000 proteins reliably using only 75 pg of tryptic peptides, representing a 10-100-fold sensitivity improvement compared with the state-of-the-art liquid chromatography (LC) or capillary electrophoresis (CE)-MS methods. PicoLC-MS extends the limit of separation science and is expected to be a powerful tool for single cell proteomics.


Assuntos
Peptídeos/análise , Proteômica , Cromatografia Líquida , Eletroforese Capilar , Células HeLa , Humanos , Espectrometria de Massas , Tamanho da Partícula , Análise de Célula Única , Propriedades de Superfície
20.
Anal Chem ; 92(3): 2665-2671, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913019

RESUMO

Single-cell proteomics can provide unique insights into biological processes by resolving heterogeneity that is obscured by bulk measurements. Gains in the overall sensitivity and proteome coverage through improvements in sample processing and analysis increase the information content obtained from each cell, particularly for less abundant proteins. Here we report on improved single-cell proteome coverage through the combination of the previously developed nanoPOTS platform with further miniaturization of liquid chromatography (LC) separations and implementation of an ultrasensitive latest generation mass spectrometer. Following nanoPOTS sample preparation, protein digests from single cells were separated using a 20 µm i.d. in-house-packed nanoLC column. Separated peptides were ionized using an etched fused-silica emitter capable of stable operation at the ∼20 nL/min flow rate provided by the LC separation. Ultrasensitive LC-MS analysis was achieved using the Orbitrap Eclipse Tribrid mass spectrometer. An average of 362 protein groups were identified by tandem mass spectrometry (MS/MS) from single HeLa cells, and 874 protein groups were identified using the Match Between Runs feature of MaxQuant. This represents an >70% increase in label-free proteome coverage for single cells relative to previous efforts using larger bore (30 µm i.d.) LC columns coupled to a previous-generation Orbitrap Fusion Lumos mass spectrometer.


Assuntos
Nanotecnologia , Proteínas de Neoplasias/análise , Proteoma/análise , Análise de Célula Única , Cromatografia Líquida/instrumentação , Células HeLa , Humanos , Espectrometria de Massas/instrumentação , Nanotecnologia/instrumentação , Análise de Célula Única/instrumentação , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa