Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(24): 16326-16338, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34870986

RESUMO

The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Cidades , Nitratos/análise
2.
Air Qual Atmos Health ; 9: 589-595, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547272

RESUMO

Nitrogen dioxide (NO2) is a ubiquitous air pollutant with high concentrations particularly close to main roads. The focus of this study was on possible differences in NO2 concentrations between adult and child heights as a function of different distances from heavily trafficked roads in urban areas. Passive diffusion tubes were used to measure NO2 concentrations at heights of 0.8 m (approximate inhalation height of children and closer to vehicle exhaust height) and 2.0 m (approximate inhalation height of adults) above the ground at a number of locations and over several weeks in the city of Edinburgh, UK. Evidence for significant differences in NO2 between heights was observed up to at least 1.2 m from kerbside of busy roads, with tubes at 0.8 m measuring concentrations 5-15 % (a few µg m-3) greater than at 2.0 m. The vertical NO2 concentration difference was not observable at distances 2.5 m or greater from the kerbside. Fitting of horizontal transects of NO2 concentrations away from main roads demonstrated the strong influence of wind speed in yielding faster fall-off in NO2 concentration from the roadside, and in near-ground vertical gradient in NO2, and lower background NO2 concentrations. These observations have potential public health implications for differential NO2 exposures between children walking, or in buggies, close to heavily trafficked urban roads compared with adults.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa