Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 528(7583): 544-7, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26701056

RESUMO

Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive-explosive transition in volcanic eruptions.

2.
Sci Rep ; 13(1): 1271, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690640

RESUMO

Cycles of stress build-up and release are inherent to tectonically active planets. Such stress oscillations impart strain and damage, prompting mechanically loaded rocks and materials to fail. Here, we investigate, under uniaxial conditions, damage accumulation and weakening caused by time-dependent creep (at 60, 65, and 70% of the rocks' expected failure stress) and repeating stress oscillations (of ± 2.5, 5.0 or 7.5% of the creep load), simulating earthquakes at a shaking frequency of ~ 1.3 Hz in volcanic rocks. The results show that stress oscillations impart more damage than constant loads, occasionally prompting sample failure. The magnitudes of the creep stresses and stress oscillations correlate with the mechanical responses of our porphyritic andesites, implicating progressive microcracking as the cause of permanent inelastic strain. Microstructural investigation reveals longer fractures and higher fracture density in the post-experimental rock. We deconvolve the inelastic strain signal caused by creep deformation to quantify the amount of damage imparted by each individual oscillation event, showing that the magnitude of strain is generally largest with the first few oscillations; in instances where pre-existing damage and/or the oscillations' amplitude favour the coalescence of micro-cracks towards system scale failure, the strain signal recorded shows a sharp increase as the number of oscillations increases, regardless of the creep condition. We conclude that repetitive stress oscillations during earthquakes can amplify the amount of damage in otherwise mechanically loaded materials, thus accentuating their weakening, a process that may affect natural or engineered structures. We specifically discuss volcanic scenarios without wholesale failure, where stress oscillations may generate damage, which could, for example, alter pore fluid pathways, modify stress distribution and affect future vulnerability to rupture and associated hazards.


Assuntos
Fraturas Ósseas , Humanos , Estresse Mecânico , Ruptura , Suporte de Carga/fisiologia
3.
J Med Imaging (Bellingham) ; 9(3): 031502, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35155717

RESUMO

Purpose: We investigate how an intrinsic speckle tracking approach to speckle-based x-ray imaging is used to extract an object's effective dark-field (DF) signal, which is capable of providing object information in three dimensions. Approach: The effective DF signal was extracted using a Fokker-Planck type formalism, which models the deformations of illuminating reference beam speckles due to both coherent and diffusive scatter from the sample. Here, we assumed that (a) small-angle scattering fans at the exit surface of the sample are rotationally symmetric and (b) the object has both attenuating and refractive properties. The associated inverse problem of extracting the effective DF signal was numerically stabilized using a "weighted determinants" approach. Results: Effective DF projection images, as well as the DF tomographic reconstructions of the wood sample, are presented. DF tomography was performed using a filtered back projection reconstruction algorithm. The DF tomographic reconstructions of the wood sample provided complementary, and otherwise inaccessible, information to augment the phase contrast reconstructions, which were also computed. Conclusions: An intrinsic speckle tracking approach to speckle-based imaging can tomographically reconstruct an object's DF signal at a low sample exposure and with a simple experimental setup. The obtained DF reconstructions have an image quality comparable to alternative x-ray DF techniques.

4.
Nat Commun ; 12(1): 1004, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579918

RESUMO

It is generally accepted that tectonic earthquakes may trigger volcanic activity, although the underlying mechanisms are poorly constrained. Here, we review current knowledge, and introduce a novel framework to help characterize earthquake-triggering processes. This framework outlines three parameters observable at volcanoes, namely magma viscosity, open- or closed-system degassing and the presence or absence of an active hydrothermal system. Our classification illustrates that most types of volcanoes may be seismically-triggered, though require different combinations of volcanic and seismic conditions, and triggering is unlikely unless the system is primed for eruption. Seismically-triggered unrest is more common, and particularly associated with hydrothermal systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa