Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(24): 13615-13625, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471944

RESUMO

Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Animais , Abelhas/genética , Comportamento Animal , Evolução Biológica , Evolução Molecular , Feminino , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Metamorfose Biológica , Comportamento Social
2.
Proc Natl Acad Sci U S A ; 115(5): 1099-1104, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339481

RESUMO

Multiple studies have investigated the mechanisms of aggressive behavior in Drosophila; however, little is known about the effects of chronic fighting experience. Here, we investigated if repeated fighting encounters would induce an internal state that could affect the expression of subsequent behavior. We trained wild-type males to become winners or losers by repeatedly pairing them with hypoaggressive or hyperaggressive opponents, respectively. As described previously, we observed that chronic losers tend to lose subsequent fights, while chronic winners tend to win them. Olfactory conditioning experiments showed that winning is perceived as rewarding, while losing is perceived as aversive. Moreover, the effect of chronic fighting experience generalized to other behaviors, such as gap-crossing and courtship. We propose that in response to repeatedly winning or losing aggressive encounters, male flies form an internal state that displays persistence and generalization; fight outcomes can also have positive or negative valence. Furthermore, we show that the activities of the PPL1-γ1pedc dopaminergic neuron and the MBON-γ1pedc>α/ß mushroom body output neuron are required for aversion to an olfactory cue associated with losing fights.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Análise por Conglomerados , Comportamento Competitivo , Cruzamentos Genéticos , Feminino , Masculino , Memória , Movimento , Neurônios/metabolismo , Odorantes , Bulbo Olfatório , Assunção de Riscos , Fatores de Tempo
3.
Mol Ecol ; 29(8): 1523-1533, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220095

RESUMO

The Kinship Theory of Genomic Imprinting (KTGI) posits that, in species where females mate with multiple males, there is selection for a male to enhance the reproductive success of his offspring at the expense of other males and his mating partner. Reciprocal crosses between honey bee subspecies show parent-of-origin effects for reproductive traits, suggesting that males modify the expression of genes related to female function in their female offspring. This effect is likely to be greater in the Cape honey bee (Apis mellifera capensis), because a male's daughters have the unique ability to produce female offspring that can develop into reproductive workers or the next queen without mating. We generated reciprocal crosses between Capensis and another subspecies and used RNA-seq to identify transcripts that are over- or underexpressed in the embryos, depending on the parental origin of the gene. As predicted, 21 genes showed expression bias towards the Capensis father's allele in colonies with a Capensis father, with no such bias in the reciprocal cross. A further six genes showed a consistent bias towards expression of the father's allele across all eight colonies examined, regardless of the direction of the cross. Consistent with predictions of the KTGI, six of the 21 genes are associated with female reproduction. No gene consistently showed overexpression of the maternal allele.


Assuntos
Impressão Genômica , Reprodução , Alelos , Animais , Abelhas/genética , Feminino , Expressão Gênica , Masculino , Fenótipo
4.
Proc Natl Acad Sci U S A ; 114(38): E8091-E8099, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874527

RESUMO

In their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.


Assuntos
Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Neuropeptídeos/genética
5.
Proc Natl Acad Sci U S A ; 111(7): 2614-9, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24488971

RESUMO

Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees.


Assuntos
Adaptação Biológica/genética , Abelhas/genética , Evolução Biológica , Variação Genética , Hierarquia Social , Metagenômica , Seleção Genética , Animais , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
6.
J Proteome Res ; 15(2): 411-21, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26718741

RESUMO

The honey bee is a key pollinator in agricultural operations as well as a model organism for studying the genetics and evolution of social behavior. The Apis mellifera genome has been sequenced and annotated twice over, enabling proteomics and functional genomics methods for probing relevant aspects of their biology. One troubling trend that emerged from proteomic analyses is that honey bee peptide samples consistently result in lower peptide identification rates compared with other organisms. This suggests that the genome annotation can be improved, or atypical biological processes are interfering with the mass spectrometry workflow. First, we tested whether high levels of polymorphisms could explain some of the missed identifications by searching spectra against the reference proteome (OGSv3.2) versus a customized proteome of a single honey bee, but our results indicate that this contribution was minor. Likewise, error-tolerant peptide searches lead us to eliminate unexpected post-translational modifications as a major factor in missed identifications. We then used a proteogenomic approach with ~1500 raw files to search for missing genes and new exons, to revive discarded annotations and to identify over 2000 new coding regions. These results will contribute to a more comprehensive genome annotation and facilitate continued research on this important insect.


Assuntos
Abelhas/genética , Genoma de Inseto/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Animais , Abelhas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Espectrometria de Massas/métodos , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
7.
Proc Natl Acad Sci U S A ; 109(44): 18012-7, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071321

RESUMO

The rise of insect societies, marked by the formation of reproductive and sterile castes, represents a major unsolved mystery in evolution. Across several independent origins of sociality, the genomes of social hymenopterans share two peculiar attributes: high recombination and low but heterogeneous GC content. For example, the genome of the honey bee, Apis mellifera, represents a mosaic of GC-poor and GC-rich regions with rates of recombination an order of magnitude higher than in humans. However, it is unclear how heterogeneity in GC content arises, and how it relates to the expression and evolution of worker traits. Using population genetic analyses, we demonstrate a bias in the allele frequency and fixation rate of derived C or G mutations in high-recombination regions, consistent with recombination's causal influence on GC-content evolution via biased gene conversion. We also show that recombination and biased gene conversion actively maintain the heterogeneous GC content of the honey bee genome despite an overall A/T mutation bias. Further, we found that GC-rich genes and intergenic regions have higher levels of genetic diversity and divergence relative to GC-poor regions, also consistent with recombination's causal influence on the rate of molecular evolution. Finally, we found that genes associated with behavior and those with worker-biased expression are found in GC-rich regions of the bee genome and also experience high rates of molecular evolution. Taken together, these findings suggest that recombination acts to maintain a genetically diverse and dynamic part of the genome where genes underlying worker behavior evolve more quickly.


Assuntos
Abelhas/genética , Comportamento Animal , Evolução Molecular , Recombinação Genética , Animais , Abelhas/fisiologia , Dados de Sequência Molecular
8.
Mol Ecol ; 22(12): 3211-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24433573

RESUMO

De la Rúa et al. (2013) express some concerns about the conclusions of our recent study showing that management increases genetic diversity of honey bees (Apis mellifera) by promoting admixture (Harpur et al. 2012). We provide a brief review of the literature on the population genetics of A. mellifera and show that we utilized appropriate sampling methods to estimate genetic diversity in the focal populations. Our finding of higher genetic diversity in two managed A. mellifera populations on two different continents is expected to be the norm given the large number of studies documenting admixture in honey bees. Our study focused on elucidating how management affects genetic diversity in honey bees, not on how to best manage bee colonies. We do not endorse the intentional admixture of honey bee populations, and we agree with De la Rúa et al. (2013) that native honey bee subspecies should be conserved.


Assuntos
Criação de Animais Domésticos , Abelhas/genética , Variação Genética , Genética Populacional , Animais
9.
Mol Ecol ; 21(18): 4414-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22564213

RESUMO

The process of domestication often brings about profound changes in levels of genetic variation in animals and plants. The honey bee, Apis mellifera, has been managed by humans for centuries for both honey and wax production and crop pollination. Human management and selective breeding are believed to have caused reductions in genetic diversity in honey bee populations, thereby contributing to the global declines threatening this ecologically and economically important insect. However, previous studies supporting this claim mostly relied on population genetic comparisons of European and African (or Africanized) honey bee races; such conclusions require reassessment given recent evidence demonstrating that the honey bee originated in Africa and colonized Europe via two independent expansions. We sampled honey bee workers from two managed populations in North America and Europe as well as several old-world progenitor populations in Africa, East and West Europe. Managed bees had highly introgressed genomes representing admixture between East and West European progenitor populations. We found that managed honey bees actually have higher levels of genetic diversity compared with their progenitors in East and West Europe, providing an unusual example whereby human management increases genetic diversity by promoting admixture. The relationship between genetic diversity and honey bee declines is tenuous given that managed bees have more genetic diversity than their progenitors and many viable domesticated animals.


Assuntos
Criação de Animais Domésticos , Abelhas/genética , Variação Genética , Genética Populacional , África , Animais , Teorema de Bayes , Cruzamento , Núcleo Celular/genética , Europa (Continente) , Técnicas de Genotipagem , Dados de Sequência Molecular , América do Norte , Análise de Sequência de DNA
10.
PLoS Genet ; 5(8): e1000609, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19696884

RESUMO

Nutrition is known to interact with genotype in human metabolic syndromes, obesity, and diabetes, and also in Drosophila metabolism. Plasticity in metabolic responses, such as changes in body fat or blood sugar in response to changes in dietary alterations, may also be affected by genotype. Here we show that variants of the foraging (for) gene in Drosophila melanogaster affect the response to food deprivation in a large suite of adult phenotypes by measuring gene by environment interactions (GEI) in a suite of food-related traits. for affects body fat, carbohydrates, food-leaving behavior, metabolite, and gene expression levels in response to food deprivation. This results in broad patterns of metabolic, genomic, and behavioral gene by environment interactions (GEI), in part by interaction with the insulin signaling pathway. Our results show that a single gene that varies in nature can have far reaching effects on behavior and metabolism by acting through multiple other genes and pathways.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Ecossistema , Privação de Alimentos , Expressão Gênica , Animais , Metabolismo dos Carboidratos , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Gorduras/metabolismo , Transdução de Sinais
11.
Mol Ecol ; 20(24): 5226-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21981322

RESUMO

The vitellogenin egg yolk precursor protein represents a well-studied case of social pleiotropy in the model organism Apis mellifera. Vitellogenin is associated with fecundity in queens and plays a major role in controlling division of labour in workers, thereby affecting both individual and colony-level fitness. We studied the molecular evolution of vitellogenin and seven other genes sequenced in a large population panel of Apis mellifera and several closely related species to investigate the role of social pleiotropy on adaptive protein evolution. We found a significant excess of nonsynonymous fixed differences between A. mellifera, A. cerana and A. florea relative to synonymous sites indicating high rates of adaptive evolution at vitellogenin. Indeed, 88% of amino acid changes were fixed by selection in some portions of the gene. Further, vitellogenin exhibited hallmark signatures of selective sweeps in A. mellifera, including a significant skew in the allele frequency spectrum, extreme levels of genetic differentiation and linkage disequilibrium. Finally, replacement polymorphisms in vitellogenin were significantly enriched in parts of the protein involved in binding lipid, establishing a link between the gene's structure, function and effects on fitness. Our case study provides unequivocal evidence of historical and ongoing bouts of adaptive evolution acting on a key socially pleiotropic gene in the honey bee.


Assuntos
Adaptação Biológica/genética , Abelhas/genética , Evolução Biológica , Vitelogeninas/genética , Animais , Abelhas/metabolismo , Feminino , Pleiotropia Genética , Genética Populacional , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Neuron ; 102(5): 1025-1036.e6, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31072787

RESUMO

Female behavior changes profoundly after mating. In Drosophila, the mechanisms underlying the long-term changes led by seminal products have been extensively studied. However, the effect of the sensory component of copulation on the female's internal state and behavior remains elusive. We pursued this question by dissociating the effect of coital sensory inputs from those of male ejaculate. We found that the sensory inputs of copulation cause a reduction of post-coital receptivity in females, referred to as the "copulation effect." We identified three layers of a neural circuit underlying this phenomenon. Abdominal neurons expressing the mechanosensory channel Piezo convey the signal of copulation to female-specific ascending neurons, LSANs, in the ventral nerve cord. LSANs relay this information to neurons expressing myoinhibitory peptides in the brain. We hereby provide a neural mechanism by which the experience of copulation facilitates females encoding their mating status, thus adjusting behavior to optimize reproduction.


Assuntos
Encéfalo/metabolismo , Copulação/fisiologia , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Neurônios/metabolismo , Abdome , Animais , Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Feminino , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/fisiologia , Canais Iônicos/fisiologia , Vias Neurais , Neurônios/fisiologia , Comportamento Sexual Animal/fisiologia
14.
G3 (Bethesda) ; 9(3): 625-634, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30642875

RESUMO

Alkali bees (Nomia melanderi) are solitary relatives of the halictine bees, which have become an important model for the evolution of social behavior, but for which few solitary comparisons exist. These ground-nesting bees defend their developing offspring against pathogens and predators, and thus exhibit some of the key traits that preceded insect sociality. Alkali bees are also efficient native pollinators of alfalfa seed, which is a crop of major economic value in the United States. We sequenced, assembled, and annotated a high-quality draft genome of 299.6 Mbp for this species. Repetitive content makes up more than one-third of this genome, and previously uncharacterized transposable elements are the most abundant type of repetitive DNA. We predicted 10,847 protein coding genes, and identify 479 of these undergoing positive directional selection with the use of population genetic analysis based on low-coverage whole genome sequencing of 19 individuals. We found evidence of recent population bottlenecks, but no significant evidence of population structure. We also identify 45 genes enriched for protein translation and folding, transcriptional regulation, and triglyceride metabolism evolving slower in alkali bees compared to other halictid bees. These resources will be useful for future studies of bee comparative genomics and pollinator health research.


Assuntos
Abelhas/genética , Genoma de Inseto , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma , Animais , Feminino , Genética Populacional , Masculino , Filogenia
15.
Front Genet ; 9: 316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147708

RESUMO

The yellow-banded bumblebee Bombus terricola was common in North America but has recently declined and is now on the IUCN Red List of threatened species. The causes of B. terricola's decline are not well understood. Our objectives were to create a partial genome and then use this to estimate population data of conservation interest, and to determine whether genes showing signs of recent selection suggest a specific cause of decline. First, we generated a draft partial genome (contig set) for B. terricola, sequenced using Pacific Biosciences RS II at an average depth of 35×. Second, we sequenced the individual genomes of 22 bumblebee gynes from Ontario and Quebec using Illumina HiSeq 2500, each at an average depth of 20×, which were used to improve the PacBio genome calls and for population genetic analyses. The latter revealed that several samples had long runs of homozygosity, and individuals had high inbreeding coefficient F, consistent with low effective population size. Our data suggest that B. terricola's effective population size has decreased orders of magnitude from pre-Holocene levels. We carried out tests of selection to identify genes that may have played a role in ameliorating environmental stressors underlying B. terricola's decline. Several immune-related genes have signatures of recent positive selection, which is consistent with the pathogen-spillover hypothesis for B. terricola's decline. The new B. terricola contig set can help solve the mystery of bumblebee decline by enabling functional genomics research to directly assess the health of pollinators and identify the stressors causing declines.

16.
Genome Biol Evol ; 8(3): 495-506, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961250

RESUMO

Protection against inflammation and oxidative stress is key in slowing down aging processes. The honey bee (Apis mellifera) shows flexible aging patterns linked to the social role of individual bees. One molecular factor associated with honey bee aging regulation is vitellogenin, a lipoglycophosphoprotein with anti-inflammatory and antioxidant properties. Recently, we identified three genes in Hymenopteran genomes arisen from ancient insect vitellogenin duplications, named vg-like-A, -B, and -C. The function of these vitellogenin homologs is unclear. We hypothesize that some of them might share gene- and protein-level similarities and a longevity-supporting role with vitellogenin. Here, we show how the structure and modifications of the vg-like genes and proteins have diverged from vitellogenin. Furthermore, all three vg-like genes show signs of positive selection, but the spatial location of the selected protein sites differ from those found in vitellogenin. We show that all these genes are expressed in both long-lived winter worker bees and in summer nurse bees with intermediate life expectancy, yet only vg-like-A shows elevated expression in winter bees as found in vitellogenin. Finally, we show that vg-like-A responds more strongly than vitellogenin to inflammatory and oxidative conditions in summer nurse bees, and that also vg-like-B responds to oxidative stress. We associate vg-like-A and, to lesser extent, vg-like-B to the antiaging roles of vitellogenin, but that vg-like-C probably is involved in some other function. Our analysis indicates that an ancient duplication event facilitated the adaptive and functional divergence of vitellogenin and its paralogs in the honey bee.


Assuntos
Abelhas/genética , Inflamação/genética , Estresse Oxidativo/genética , Vitelogeninas/genética , Animais , Duplicação Gênica , Inflamação/patologia , Proteínas de Insetos/genética , Longevidade/genética , Longevidade/fisiologia , Homologia de Sequência de Aminoácidos
17.
Ecol Evol ; 5(21): 4795-807, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640660

RESUMO

The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.

18.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25977371

RESUMO

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Assuntos
Abelhas/genética , Evolução Molecular , Deriva Genética , Comportamento Social , Transcriptoma , Aminoácido N-Acetiltransferase , Animais , Abelhas/classificação , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma de Inseto/genética , Filogenia , Seleção Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
19.
Front Genet ; 5: 431, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566318

RESUMO

It is increasingly apparent that genes and networks that influence complex behavior are evolutionary conserved, which is paradoxical considering that behavior is labile over evolutionary timescales. How does adaptive change in behavior arise if behavior is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behavior, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behavior of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behavior can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network.

20.
Commun Integr Biol ; 6(2): e22919, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23748924

RESUMO

Eusocial Hymenoptera, such as the European honey bee, Apis mellifera, have the highest recombination rates of multicellular animals.(1) Recently, we showed(2) that a side-effect of recombination in the honey bee, GC biased gene conversion (bGC), helps maintain the unusual bimodal GC-content distribution of the bee genome by increasing GC-content in high recombination areas while low recombination areas are losing GC-content because of biased AT mutations and low rates of bGC. Although the very high recombination rate of A. mellifera makes GC-content evolution easier to study, the pattern is consistent with results found in many other species including mammals and yeast.(3) Also consistent across phyla is the association of higher genetic diversity and divergence with high GC and high recombination areas.(4) (,) (5) Finally, we showed that genes overexpressed in the brains of workers cluster in GC-rich genomic areas with the highest rates of recombination and molecular evolution.(2) In this Addendum we present a conceptual model of how eusociality and high recombination rates may co-evolve.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa