Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Shoulder Elbow Surg ; 30(3): 572-579, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32621980

RESUMO

BACKGROUND: Reverse shoulder arthroplasty (RSA) humeral implant parameters have been previously studied with respect to range of motion, deltoid function, and stability. However, limited literature exists on the influence of humeral design features on scapular spine strain. The purpose of this cadaveric biomechanical simulator study was to evaluate the role of humeral component lateralization and neck-shaft angle (NSA) on scapular spine strain. METHODS: Eight fresh-frozen cadaveric shoulders were tested using an in vitro shoulder simulator. A custom-designed modular RSA system was implanted that allowed for the in situ adjustment of humeral lateralization and NSA. Scapular spine strain was measured by strain gauges placed along the acromion and scapular spine in clinically relevant positions representative of the Levy fracture zones. All testing was conducted in both abduction and forward elevation. RESULTS: In Levy zones 2 and 3, increasing humeral lateralization caused significant incremental decreases in scapular spine strain at 0° and 90° abduction (P < .042). Strain decreases as high as 34% were noted with increases in humeral lateralization from -5 to 15 mm (P = .042). Changing NSA had no statistically significant effect on scapular spine strain (P > .14). CONCLUSIONS: Some humeral implant design features in RSA have effects on scapular spine strain. Humeral component lateralization had significant effects, whereas adjusting NSA resulted in no substantial differences in scapular spine strain. Understanding humeral component variables is important to allow for design optimization of future RSA implants.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Prótese de Ombro , Artroplastia , Humanos , Úmero/cirurgia , Amplitude de Movimento Articular , Articulação do Ombro/cirurgia
2.
Shoulder Elbow ; 13(6): 610-619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34804210

RESUMO

BACKGROUND: Scapular spine insufficiency fractures following reverse shoulder arthroplasty are poorly understood. There exists limited literature regarding the role of reverse shoulder arthroplasty lateralization on scapular spine strains and fractures. The purpose of this cadaveric biomechanical simulator study was to evaluate the role of glenoid lateralization on scapular spine strain. METHODS: Eight cadaveric shoulders were tested using an in-vitro simulator. A custom modular reverse shoulder arthroplasty was implanted that allowed for in-situ glenoid lateralization adjustment. Scapular spine strain was measured by strain gauges placed in clinically relevant Levy zones along the scapular spine. All specimens were tested in loaded forward elevation and abduction. RESULTS: Glenoid lateralization from 0 to 5 mm caused negligible changes in scapular spine strains. Lateralization from 5 to 10 mm, however, caused significant increases in strain at 0° forward elevation in all strain gauges (p < 0.026). Strains measured in Levy zone 2 were significantly higher than all other locations (p < 0.039). Additionally, forward elevation resulted in significantly higher strain values than abduction (p = 0.001). CONCLUSIONS: Glenoid lateralization is an important parameter in reverse shoulder arthroplasty; however, our results demonstrate higher degrees of lateralization may place higher strains on the scapular spine. An understanding of reverse shoulder arthroplasty lateralization and scapular spine strains is important to optimize parameters and to mitigate negative effects. LEVEL OF EVIDENCE: Basic Sciences Study, Cadaveric Model, Biomechanics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa