Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(1): e0011882, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227595

RESUMO

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease (NTD) targeted by the World Health Organization for elimination as a public health problem (EPHP). Since 2000, more than 9 billion treatments of antifilarial medicines have been distributed through mass drug administration (MDA) programmes in 72 endemic countries and 17 countries have reached EPHP. Yet in 2021, nearly 900 million people still required MDA with combinations of albendazole, diethylcarbamazine and/or ivermectin. Despite the reliance on these drugs, there remain gaps in understanding of variation in responses to treatment. As demonstrated for other infectious diseases, some urgent questions could be addressed by conducting individual participant data (IPD) meta-analyses. Here, we present the results of a systematic literature review to estimate the abundance of IPD on pre- and post-intervention indicators of infection and/or morbidity and assess the feasibility of building a global data repository. METHODOLOGY: We searched literature published between 1st January 2000 and 5th May 2023 in 15 databases to identify prospective studies assessing LF treatment and/or morbidity management and disease prevention (MMDP) approaches. We considered only studies where individual participants were diagnosed with LF infection or disease and were followed up on at least one occasion after receiving an intervention/treatment. PRINCIPAL FINDINGS: We identified 138 eligible studies from 23 countries, having followed up an estimated 29,842 participants after intervention. We estimate 14,800 (49.6%) IPD on pre- and post-intervention infection indicators including microfilaraemia, circulating filarial antigen and/or ultrasound indicators measured before and after intervention using 8 drugs administered in various combinations. We identified 33 studies on MMDP, estimating 6,102 (20.4%) IPD on pre- and post-intervention clinical morbidity indicators only. A further 8,940 IPD cover a mixture of infection and morbidity outcomes measured with other diagnostics, from participants followed for adverse event outcomes only or recruited after initial intervention. CONCLUSIONS: The LF treatment study landscape is heterogeneous, but the abundance of studies and related IPD suggest that establishing a global data repository to facilitate IPD meta-analyses would be feasible and useful to address unresolved questions on variation in treatment outcomes across geographies, demographics and in underrepresented groups. New studies using more standardized approaches should be initiated to address the scarcity and inconsistency of data on morbidity management.


Assuntos
Filariose Linfática , Filaricidas , Humanos , Filariose Linfática/tratamento farmacológico , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Estudos Prospectivos , Filaricidas/uso terapêutico , Dietilcarbamazina/uso terapêutico , Albendazol/uso terapêutico , Ivermectina/uso terapêutico
2.
PLoS Negl Trop Dis ; 18(2): e0011946, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315725

RESUMO

BACKGROUND: As of 2021, the National Kala-azar Elimination Programme (NKAEP) in India has achieved visceral leishmaniasis (VL) elimination (<1 case / 10,000 population/year per block) in 625 of the 633 endemic blocks (subdistricts) in four states. The programme needs to sustain this achievement and target interventions in the remaining blocks to achieve the WHO 2030 target of VL elimination as a public health problem. An effective tool to analyse programme data and predict/ forecast the spatial and temporal trends of VL incidence, elimination threshold, and risk of resurgence will be of use to the programme management at this juncture. METHODOLOGY/PRINCIPAL FINDINGS: We employed spatiotemporal models incorporating environment, climatic and demographic factors as covariates to describe monthly VL cases for 8-years (2013-2020) in 491 and 27 endemic and non-endemic blocks of Bihar and Jharkhand states. We fitted 37 models of spatial, temporal, and spatiotemporal interaction random effects with covariates to monthly VL cases for 6-years (2013-2018, training data) using Bayesian inference via Integrated Nested Laplace Approximation (INLA) approach. The best-fitting model was selected based on deviance information criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC) and was validated with monthly cases for 2019-2020 (test data). The model could describe observed spatial and temporal patterns of VL incidence in the two states having widely differing incidence trajectories, with >93% and 99% coverage probability (proportion of observations falling inside 95% Bayesian credible interval for the predicted number of VL cases per month) during the training and testing periods. PIT (probability integral transform) histograms confirmed consistency between prediction and observation for the test period. Forecasting for 2021-2023 showed that the annual VL incidence is likely to exceed elimination threshold in 16-18 blocks in 4 districts of Jharkhand and 33-38 blocks in 10 districts of Bihar. The risk of VL in non-endemic neighbouring blocks of both Bihar and Jharkhand are less than 0.5 during the training and test periods, and for 2021-2023, the probability that the risk greater than 1 is negligible (P<0.1). Fitted model showed that VL occurrence was positively associated with mean temperature, minimum temperature, enhanced vegetation index, precipitation, and isothermality, and negatively with maximum temperature, land surface temperature, soil moisture and population density. CONCLUSIONS/SIGNIFICANCE: The spatiotemporal model incorporating environmental, bioclimatic, and demographic factors demonstrated that the KAMIS database of the national programmme can be used for block level predictions of long-term spatial and temporal trends in VL incidence and risk of outbreak / resurgence in endemic and non-endemic settings. The database integrated with the modelling framework and a dashboard facility can facilitate such analysis and predictions. This could aid the programme to monitor progress of VL elimination at least one-year ahead, assess risk of resurgence or outbreak in post-elimination settings, and implement timely and targeted interventions or preventive measures so that the NKAEP meet the target of achieving elimination by 2030.


Assuntos
Leishmaniose Visceral , Humanos , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/prevenção & controle , Incidência , Teorema de Bayes , Saúde Pública , Índia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa