RESUMO
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipídeos/química , Nanopartículas/química , Propriedades de Superfície , Lipossomos/química , AnimaisRESUMO
Gloriosa superba L., commonly known as "gloriosa lily," "glory lily," and "tiger claw," is a perennial climber in the Liliaceae family. This plant is used in African and Southeast Asian cultures as an ayurvedic medicinal herb to treat various health conditions. Its main bioactive component is colchicine, which is responsible for medicinal efficacies as well as poisonous properties of the plant. A high market demand, imprudent harvesting of G. superba from natural habitat, and low seed setting have led scientists to explore micropropagation techniques and in vitro optimization of its phytochemicals. Plant growth regulators have been used to induce callus, root, and shoot organogenesis, and somatic embryogenesis in vitro. This review is aimed at presenting information regarding the occurrence, taxonomic description, phytochemistry, micropropagation, in vitro secondary metabolite, and synthetic seed production. The data collected from the existing literature, along with an analysis of individual study details, outcomes, and variations in the reports, will contribute to the development of biotechnological strategies for conservation and mass propagation of G. superba. KEY POINTS: ⢠Latest literature on micropropagation of Gloriosa superba. ⢠Biotechnological production and optimization of colchicine. ⢠Regeneration, somatic embryogenesis, and synthetic seed production.
Assuntos
Colchicaceae , Plantas Medicinais , Colchicina , SementesRESUMO
MAIN CONCLUSION: Shoot tip necrosis is a physiological condition that negatively impacts the growth and development of in vitro plant shoot cultures across a wide range of species. Shoot tip necrosis is a physiological condition and disorder that can arise in plantlets or shoots in vitro that results in death of the shoot tip. This condition, which can spread basipetally and affect the emergence of axillary shoots from buds lower down the stem, is due to the cessation of apical dominance. STN can occur at both shoot multiplication and rooting stages. One of the most common factors that cause STN is nutrient deficiency or imbalance. Moreover, the presence or absence of plant growth regulators (auxins or cytokinins) at specific developmental stages may impact STN. The cytokinin to auxin ratio within an in vitro plant can be modified by varying the concentration of cytokinins used in the culture medium. The supply of nutrients to in vitro shoots or plantlets might also affect their hormonal balance, thus modifying the occurrence of STN. High relative humidity within culture vessels and hyperhydricity are associated with STN. An adequate supply of calcium as the divalent cation (Ca2+) can hinder STN by inhibiting the accumulation of phenolic compounds and thus programmed cell death. Moreover, the level of Ca2+ affects auxin transport and ethylene production, and higher ethylene production, which can occur as a result of high relative humidity in or poor ventilation of the in vitro culture vessel, induces STN. High relative humidity can decrease the mobility of Ca2+ within a plant, resulting in Ca2+ deficiency and STN. STN of in vitro shoots or plantlets can be halted or reversed by altering the basal medium, mainly the concentration of Ca2+, adjusting the levels of auxins or cytokinins, or modifying culture conditions. This review examines the literature related to STN, seeks to discover the associated factors and relations between them, proposes practical solutions, and attempts to better understand the mechanism(s) underlying this condition in vitro.
Assuntos
Meios de Cultura/química , Meios de Cultura/farmacologia , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Boro/metabolismo , Boro/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Morte Celular , Genótipo , Necrose , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/citologia , Brotos de Planta/efeitos dos fármacosRESUMO
Following publication of the original article (Kher et al. 2020), the authors identified following mistake in the author affiliation.
RESUMO
Hemidesmus indicus (L.) R. Br. ex Schult is commonly known as anantmul or Indian sarsaparilla. The roots of this plant, which display a wide range of medicinal, biological, and phytopharmaceutical properties, are used in the pharmaceutical and food industries. Conventionally, the plant is propagated by seed germination or vegetatively, but the efficacy of traditional methods has some limitations: plants derived from seed germination are prone to seed-borne diseases, or plantlet production using vegetative propagation is limited. In contrast, plant tissue culture allows for large-scale propagation and secondary metabolite production in vitro without sacrificing plants from their natural habitats. Many efforts have been made over 40 years of research to establish efficient micropropagation protocols to speed up cultivation of this plant, including callus-mediated in vitro propagation, somatic embryogenesis, and shoot multiplication using cotyledenory nodes, stem segments, shoot tips, and nodal explants. Among these explants, nodal explants are the most commonly used for H. indicus micropropagation. The application of adenine sulfate, citric acid, ascorbic acid, and arginine may be useful in preventing explant browning, premature leaf senescence, and shoot tip abscission during in vitro culture. This review provides insight into micropropagation, use of synthetic seeds for short-term germplasm preservation, and in vitro production of secondary metabolites such as 2-hydroxy-4-methoxybenzaldehyde, lupeol, vanillin, and rutin, from in vitro root and callus cultures. Furthermore, unexplored and possible innovative areas of research in Hemidesmus biotechnology are also discussed. KEY POINTS: ⢠Hemidesmus indicus has multiple therapeutic applications. ⢠H. indicus roots are used in confectionary and pharmacy. ⢠This review comprehensively assesses H. indicus tissue culture. ⢠Challenges and future research of H. indicus biotechnology are discussed.
Assuntos
Biotecnologia/métodos , Hemidesmus/química , Extratos Vegetais/química , Técnicas de Cultura de Tecidos/métodos , Hemidesmus/crescimento & desenvolvimento , Raízes de Plantas/química , Metabolismo SecundárioRESUMO
MAIN CONCLUSION: Sustainable resource preservation of Santalum species that yield commercially important forest products is needed. This review provides an understanding of their basic biology, propagation, hemi-parasitic nature, reproductive biology, and biotechnology. Many species of the genus Santalum (Santalaceae) have been exploited unremittingly for centuries, resulting in the extinction of one and the threatened status of three other species. This reduction in biodiversity of sandalwood has resulted from the commercial exploitation of its oil-rich fragrant heartwood. In a bid to conserve the remaining germplasm, biotechnology provides a feasible, and effective, means of propagating members of this genus. This review provides a detailed understanding of the biological mechanisms underlying the success or failure of traditional propagation, including a synopsis of the process of hemi-parasitism in S. album, and of the suitability of host plants to sustain the growth of seedlings and plants under forestry production. For the mass production of economically important metabolites, and to improve uniformity of essential oils, the use of clonal material of similar genetic background for cultivation is important. This review summarizes traditional methods of sandalwood production with complementary and more advanced in vitro technologies to provide a basis for researchers, conservationists and industry to implement sustainable programs of research and development for this revered genus.
Assuntos
Técnicas de Embriogênese Somática de Plantas/métodos , Santalum/fisiologia , Técnicas de Cultura de Tecidos/métodos , Biotecnologia/métodos , Agricultura Florestal/métodos , Especificidade de Hospedeiro , Santalum/genética , Plântula/crescimento & desenvolvimento , Autoincompatibilidade em AngiospermasRESUMO
The grapevine is an economically important plant, with a historical connection to the development of human culture. Currently, over 6000 accessions are known as individual grapevine varieties, some of which are important to national heritage, valuable for current viticultural practices, and as genetic resources to maintain plasticity under changing climatic conditions, environmental sustainability, and market demands. Recently, the diversity of cultivated grapevines has declined significantly, due to the increased focus of global wine industries on a few major cultivars. Moreover, due to biotic and abiotic stresses, the wild V. vinifera germplasm's genetic diversity has declined, with some varieties on the verge of extinction. Vitis germplasm conservation can be achieved via either in situ (e.g., protected areas) or Ex situ (e.g., field collections, seed banks, and tissue culture collections) methods. This study aims to highlight the importance of Vitis field bank collections. We demonstrate the research done in the Israeli indigenous Vitis vinifera collection. The multi-layer analysis of the varieties enabled the identification of drought stress-resistant varieties, and suggested a mechanism for this resistance through noting the dramatic phenological differences in foliage development between resistant and sensitive varieties. In addition, we show a general characterization of the varieties via major grape characteristics, including bunch and berry shape, as well as their possible utilization based on their aromatic and phenolic profiles.
RESUMO
Vitex is a large genus consisting of 230 species of trees and shrubs with multiple (ornamental, ethnobotanic and pharmacological) uses. Despite this, micropropagation has only been used to effectively propagate and preserve germplasm a limited number (six) of Vitex species (V. agnus-castus, V. doniana, V. glabrata, V. negundo, V. rotundifolia, V. trifolia). This review on Vitex provides details of published micropropagation protocols and perspectives on their application to germplasm preservation and in vitro conservation. Such details serve as a practically useful user manual for Vitex researchers. The importance of micropropagation and its application to synthetic seed production, in vitro flowering, production of secondary metabolites, and the use of molecular markers to detect somaclonal variation in vitro, are also highlighted.