Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074952

RESUMO

This comprehensive review explores the role of deep learning (DL) in glioma segmentation using multiparametric magnetic resonance imaging (MRI) data. The study surveys advanced techniques such as multiparametric MRI for capturing the complex nature of gliomas. It delves into the integration of DL with MRI, focusing on convolutional neural networks (CNNs) and their remarkable capabilities in tumor segmentation. Clinical applications of DL-based segmentation are highlighted, including treatment planning, monitoring treatment response, and distinguishing between tumor progression and pseudo-progression. Furthermore, the review examines the evolution of DL-based segmentation studies, from early CNN models to recent advancements such as attention mechanisms and transformer models. Challenges in data quality, gradient vanishing, and model interpretability are discussed. The review concludes with insights into future research directions, emphasizing the importance of addressing tumor heterogeneity, integrating genomic data, and ensuring responsible deployment of DL-driven healthcare technologies. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 2.

2.
J Magn Reson Imaging ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031466

RESUMO

BACKGROUND: Glioma grading transformed in World Health Organization (WHO) 2021 CNS tumor classification, integrating molecular markers. However, the impact of this change on radiomics-based machine learning (ML) classifiers remains unexplored. PURPOSE: To assess the performance of ML in classifying glioma tumor grades based on various WHO criteria. STUDY TYPE: Retrospective. SUBJECTS: A neuropathologist regraded gliomas of 237 patients into WHO 2016 and 2021 from 2007 criteria. FIELD STRENGTH/SEQUENCE: Multicentric 0.5 to 3 Tesla; pre- and post-contrast T1-weighted, T2-weighted, and fluid-attenuated inversion recovery. ASSESSMENT: Radiomic features were selected using random forest-recursive feature elimination. The synthetic minority over-sampling technique (SMOTE) was implemented for data augmentation. Stratified 10-fold cross-validation with and without SMOTE was used to evaluate 11 classifiers for 3-grade (2, 3, and 4; WHO 2016 and 2021) and 2-grade (low and high grade; WHO 2007 and 2021) classification. Additionally, we developed the models on data randomly divided into training and test sets (mixed-data analysis), or data divided based on the centers (independent-data analysis). STATISTICAL TESTS: We assessed ML classifiers using sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC). Top performances were compared with a t-test and categorical data with the chi-square test using a significance level of P < 0.05. RESULTS: In the mixed-data analysis, Stacking Classifier without SMOTE achieved the highest accuracy (0.86) and AUC (0.92) in 3-grade WHO 2021 grouping. The results of WHO 2021 were significantly better than WHO 2016 (P-value<0.0001). In the 2-grade analysis, ML achieved 1.00 in all metrics. In the independent-data analysis, ML classifiers showed strong discrimination between grade 2 and 4, despite lower performance metrics than the mixed analysis. DATA CONCLUSION: ML algorithms performed better in glioma tumor grading based on WHO 2021 criteria. Nonetheless, the clinical use of ML classifiers needs further investigation. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

3.
Ann Biomed Eng ; 52(5): 1359-1377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409433

RESUMO

This study executes a quantitative and visual investigation on the effectiveness of data augmentation and hyperparameter optimization on the accuracy of deep learning-based segmentation of LGG tumors. The study employed the MobileNetV2 and ResNet backbones with atrous convolution in DeepLabV3+ structure. The Grad-CAM tool was also used to interpret the effect of augmentation and network optimization on segmentation performance. A wide investigation was performed to optimize the network hyperparameters. In addition, the study examined 35 different models to evaluate different data augmentation techniques. The results of the study indicated that incorporating data augmentation techniques and optimization can improve the performance of segmenting brain LGG tumors up to 10%. Our extensive investigation of the data augmentation techniques indicated that enlargement of data from 90° and 225° rotated data,up to down and left to right flipping are the most effective techniques. MobilenetV2 as the backbone,"Focal Loss" as the loss function and "Adam" as the optimizer showed the superior results. The optimal model (DLG-Net) achieved an overall accuracy of 96.1% with a loss value of 0.006. Specifically, the segmentation performance for Whole Tumor (WT), Tumor Core (TC), and Enhanced Tumor (ET) reached a Dice Similarity Coefficient (DSC) of 89.4%, 70.1%, and 49.9%, respectively. Simultaneous visual and quantitative assessment of data augmentation and network optimization can lead to an optimal model with a reasonable performance in segmenting the LGG tumors.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Humanos , Glioma/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
4.
Phys Med ; 100: 51-63, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35732092

RESUMO

PURPOSE: To assess the effectiveness of deep learning algorithms in automated segmentation of magnetic resonance brain images for determining the enhanced tumor, the peri-tumoral edema, the necrotic/ non-enhancing tumor, and Normal tissue volumes. METHODS AND MATERIALS: A new deep neural network algorithm, Deep-Net, was developed for semantic segmentation of the glioblastoma tumors in MR images, using the Deeplabv3+ architecture, and the pre-trained Resnet18 initial weights. The MR image Dataset used for training the network was taken from the BraTS 2020 training set, with the ground truth labels for different tumor subregions manually drawn by a group of expert neuroradiologists. In this work, two multi-modal MRI scans, i.e., T1ce and FLAIR of 293 patients with high-grade glioma (HGG), were used for deep network training (Deep-Net). The performance of the network was assessed for different hyper-parameters, to obtain the optimum set of parameters. The similarity scores were used for the evaluation of the optimized network. RESULTS: According to the results of this study, epoch #37 is the optimum epoch giving the best global accuracy (97.53%), and loss function (0.14). The Deep-Net sensitivity in the delineation of the enhanced tumor is more than 90%. CONCLUSIONS: The results indicate that the Deep-Net was able to segment GBM tumors with high accuracy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioma/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa