Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Apoptosis ; 22(5): 681-695, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299505

RESUMO

Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles.


Assuntos
Caspases/metabolismo , Endocitose/genética , Lipídeos de Membrana/metabolismo , Receptor fas/genética , Humanos , Células Jurkat , Espectrometria de Massas , Lipídeos de Membrana/genética , Mitocôndrias/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptor fas/metabolismo
2.
Res Sq ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38464300

RESUMO

The prediction of RNA secondary structures is essential for understanding its underlying principles and applications in diverse fields, including molecular diagnostics and RNA-based therapeutic strategies. However, the complexity of the search space presents a challenge. This work proposes a Graph Convolutional Network (GCNfold) for predicting the RNA secondary structure. GCNfold considers an RNA sequence as graph-structured data and predicts posterior base-pairing probabilities given the prior base-pairing probabilities, calculated using McCaskill's partition function. The performance of GCNfold surpasses that of the state-of-the-art folding algorithms, as we have incorporated minimum free energy information into the richly parameterized network, enhancing its robustness in predicting non-homologous RNA secondary structures. A Symmetric Argmax Post-processing algorithm ensures that GCNfold formulates valid structures. To validate our algorithm, we applied it to the SARS-CoV-2 E gene and determined the secondary structure of the E-gene across the Betacoronavirus subgenera.

3.
Apoptosis ; 18(10): 1154-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917691

RESUMO

Successful translation of findings derived from preclinical studies into effective therapies is critical in biomedical research. Lack of robustness and reproducibility of the preclinical data, due to insufficient number of repeats, inadequate cell-based and mouse models contribute to the poor success rate. Antibodies are widely used in preclinical research, notably to determine the expression of potential therapeutic targets in tissues of interest, including tumors, but also to identify disease and/or treatment response biomarkers. We sought to determine whether the current antibody characterization standards in preclinical research are sufficient to ensure reliability of the data found in peer-reviewed publications. To address this issue, we used detection of the protein c-FLIP, a major factor of resistance to apoptosis, as a proof of concept. Accurate detection of endogenous c-FLIP levels in the preclinical settings is imperative since it is considered as a potential theranostic biomarker. Several sources of c-FLIP antibodies validated by their manufacturer and recommended for western blotting were therefore rigorously tested. We found a wide divergence in immune recognition properties. While these antibodies have been used in many publications, our results show that several of them failed to detect endogenous c-FLIP protein by Western blotting. Our results suggest that antibody validation standards are inadequate, and that systematic use of genetic knockdowns and/or knockouts to establish proof of specificity is critical, even for antibodies previously used in the scientific literature. Because antibodies are fundamental tools in both preclinical and clinical research, ensuring their specificity is crucial.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/imunologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Coelhos
4.
Blood ; 117(17): 4658-66, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21378271

RESUMO

CD36 plays a critical role in the inhibition of angiogenesis through binding to the type 1 repeats of thrombospondin-1 (TSP-1) and activating Fyn tyrosine kinase and MAPK pathways. Here, we reveal a novel association of CD36 with VEGFR-2 and spleen tyrosine kinase (Syk). We also address the correlation between the expression of CD36 and Syk by demonstrating that overexpression of CD36 in HUVECs up-regulates endogenous Syk expression. We also define a new role for TSP-1 and CD36 in the activation of the VEGFR-2 signaling pathway that requires Syk. Our findings also identify a role for Syk as a stimulator of VEGF-A-induced angiogenesis by increasing phosphorylation of Y1175 in VEGFR-2, which is a major tyrosine for promoting VEGF-A-induced endothelial cell migration. Together, these studies introduce a new signaling pathway for TSP-1, CD36, and Syk, and address the role of these proteins in regulating the angiogenic switch.


Assuntos
Antígenos CD36/metabolismo , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Células Endoteliais/citologia , Humanos , Neovascularização Fisiológica/fisiologia , Fosforilação/fisiologia , Quinase Syk , Veias Umbilicais/citologia , Regulação para Cima/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Blood ; 115(21): 4206-16, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20299508

RESUMO

Many clinically validated kinases, such as BCR-ABL, c-Kit, PDGFR, and EGFR, become resistant to adenosine triphosphate-competitive inhibitors through mutation of the so-called gatekeeper amino acid from a threonine to a large hydrophobic amino acid, such as an isoleucine or methionine. We have developed a new class of adenosine triphosphate competitive inhibitors, exemplified by HG-7-85-01, which is capable of inhibiting T315I- BCR-ABL (clinically observed in chronic myeloid leukemia), T670I-c-Kit (clinically observed in gastrointestinal stromal tumors), and T674I/M-PDGFRalpha (clinically observed in hypereosinophilic syndrome). HG-7-85-01 is unique among all currently reported kinase inhibitors in having the ability to accommodate either a gatekeeper threonine, present in the wild-type forms of these kinases, or a large hydrophobic amino acid without becoming a promiscuous kinase inhibitor. The distinctive ability of HG-7-85-01 to simultaneously inhibit both wild-type and mutant forms of several kinases of clinical relevance is an important step in the development of the next generation of tyrosine kinase inhibitors.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas Mutantes/antagonistas & inibidores , Piperazinas/química , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Tiazóis/química , Tiazóis/farmacologia , Quinases da Família src/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib , Técnicas In Vitro , Estrutura Molecular , Mutação de Sentido Incorreto , Pirimidinas/farmacologia , Treonina/genética
6.
Biochim Biophys Acta Biomembr ; 1862(2): 183107, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678022

RESUMO

Host defense peptides selectively kill bacterial and cancer cells (including those that are drug-resistant) by perturbing the permeability of their membranes, without being significantly toxic to the host. Coulombic interactions between these cationic and amphipathic peptides and the negatively charged membranes of pathogenic cells contribute to the selective toxicity. However, a positive charge is not sufficient for selectivity, which can be achieved only by a finely tuned balance of electrostatic and hydrophobic driving forces. A common property of amphipathic peptides is the formation of aggregated structures in solution, but the role of this phenomenon in peptide activity and selectivity has received limited attention. Our data on the anticancer peptide killerFLIP demonstrate that aggregation strongly increases peptide selectivity, by reducing the effective peptide hydrophobicity and thus the affinity towards membranes composed of neutral lipids (like the outer layer of healthy eukaryotic cell membranes). Aggregation is therefore a useful tool to modulate the selectivity of membrane active peptides and peptidomimetics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Multimerização Proteica , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Ligação Proteica
7.
Biochim Biophys Acta ; 1785(1): 63-84, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17980712

RESUMO

Numerous studies have revealed that the BCR-ABL oncoprotein abnormally engages a multitude of signaling pathways, some of which may be important for its leukemogenic properties. Central to this has been the determination that the tyrosine kinase function of BCR-ABL is mainly responsible for its transforming potential, and can be targeted with small molecule inhibitors, such as imatinib mesylate (Gleevec, STI-571). Despite this apparent success, the development of clinical resistance to imatinib therapy, and the inability of imatinib to eradicate BCR-ABL-positive malignant hematopoietic progenitors demand detailed investigations of additional effector pathways that can be targeted for CML treatment. The promotion of cellular survival via the suppression of apoptotic pathways is a fundamental characteristic of tumor cells that enables resistance to anti-cancer therapies. As substrates of survival kinases such as Akt, the FoxO family of transcription factors, particularly FoxO3a, has emerged as playing an important role in the cell cycle arrest and apoptosis of hematopoietic cells. This review will discuss our current understanding of BCR-ABL signaling with a focus on apoptotic suppressive mechanisms and alternative approaches to CML therapy, as well as the potential for FoxO transcription factors as novel therapeutic targets.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Apoptose/efeitos dos fármacos , Benzamidas , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O3 , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Modelos Biológicos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais
8.
Biochem J ; 413(3): 467-78, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18442358

RESUMO

Participation of diverse organelles in the intracellular signalling that follows CD95/Fas receptor ligation encompasses a series of subcellular changes that are mandatory for, or even bolster, the apoptotic cascade. In the present study, we analysed the role of endocytosis in the propagation of cell death signalling after CD95/Fas engagement in type II cells (CEM cells). We show that this receptor-ligand interaction triggers endocytosis independently of any caspase activation. This FasL (Fas ligand)-induced endocytosis also leads to an early and directional 'movement' of endocytic vesicles towards the mitochondrial compartment. In turn, this cross-talk between endosomal and mitochondrial compartments was followed by the loss of the mitochondrial membrane potential and apoptosis execution. This cell remodelling was absent in receptor-independent cell death, such as that induced by the mitochondriotropic drug staurosporine, and in a CEM cell line selected for its multidrug resistance (CEM VBL100). In these cells a reduced FasL (Fas ligand)-induced endocytosis and a reduced organelle cross-talk corresponded to a reduced apoptosis. Altogether, these findings suggest a key role of endocytosis in the propagation and amplification of the CD95/Fas-activated signalling leading to type II cell demise.


Assuntos
Apoptose/fisiologia , Endocitose/fisiologia , Receptor fas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Endocitose/efeitos dos fármacos , Proteína Ligante Fas/farmacologia , Imunofluorescência , Humanos , Immunoblotting , Metaloproteinases da Matriz/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Monensin/farmacologia , Estaurosporina/farmacologia
9.
Cancer Res ; 67(19): 9425-34, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909052

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2L promotes apoptosis in cancer cells while sparing normal cells. Although many cancers are sensitive to TRAIL-induced apoptosis, some evade the proapoptotic effects of TRAIL. Therefore, differentiating molecular mechanisms that distinguish between TRAIL-sensitive and TRAIL-resistant tumors are essential for effective cancer therapies. Here, we show that c-Fos functions as a proapoptotic agent by repressing the antiapoptotic molecule c-FLIP(L). c-Fos binds the c-FLIP(L) promoter, represses its transcriptional activity, and reduces c-FLIP(L) mRNA and protein levels. Therefore, c-Fos is a key regulator of c-FLIP(L), and activation of c-Fos determines whether a cancer cell will undergo cell death after TRAIL treatment. Strategies to activate c-Fos or inhibit c-FLIP(L) may potentiate TRAIL-based proapoptotic therapies.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Apoptose/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes/farmacologia , Fator de Transcrição AP-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Cell Biochem ; 104(4): 1124-49, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18459149

RESUMO

Apoptosis is a tightly regulated cell suicide program that plays an essential role in the maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Defects in this native defense mechanism promote malignant transformation and frequently confer chemoresistance to transformed cells. Indeed, the evasion of apoptosis has been recognized as a hallmark of cancer. Given that multiple mechanisms function at many levels to orchestrate the regulation of apoptosis, a multitude of opportunities for apoptotic dysregulation are present within the intricate signaling network of cell. Several of the molecular mechanisms by which cancer cells are protected from apoptosis have been elucidated. These advances have facilitated the development of novel apoptosis-inducing agents that have demonstrated single-agent activity against various types of cancers cells and/or sensitized resistant cancer cells to conventional cytotoxic therapies. Herein, we will highlight several of the central modes of apoptotic dysregulation found in cancer. We will also discuss several therapeutic strategies that aim to reestablish the apoptotic response, and thereby eradicate cancer cells, including those that demonstrate resistance to traditional therapies.


Assuntos
Apoptose , Transdução de Sinais , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
11.
Apoptosis ; 13(7): 845-56, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18491232

RESUMO

Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) initiate pathways of cell death in which caspase activation is mediated either directly (without mitochondrial amplification), or indirectly via the release of apoptogenic factors from mitochondria. Phospholipid scramblases (PLS) are enzymes that play a key role in cellular function by inducing bidirectional movement of membrane lipids. Changes in mitochondrial membrane lipids, cardiolipin, are critical for mediating apoptotic response in many cell-types. PLS3 is a phospholipid scramblase that is localized to mitochondria and is thought to be involved in the regulation of apoptotic signals. Here we report that exogenous-expression of PLS3 enhances apoptotic death induced by TRAIL. This is acheived by potentiating the mitochondrial arm of the death pathway. Thereby, PLS3 expression facilitates changes in mitochondrial membrane lipids that promote the release of apoptogenic factors and consequent full activation and processing of the caspase-9 and effector caspase-3. Moreover, we show that knock-down of endogenous PLS3 suppresses TRAIL-induced changes in cardiolipin. Finally, we demonstrate that TRAIL-induced activation of PKC-delta mediates regulation of the PLS3-induced changes in cardiolipin.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose/efeitos dos fármacos , Sequência de Bases , Cardiolipinas/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Primers do DNA/genética , Ativação Enzimática/efeitos dos fármacos , Humanos , Células Jurkat , Lipídeos de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Proteínas de Transferência de Fosfolipídeos/genética , Proteína Quinase C-delta/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Transfecção
12.
Methods Enzymol ; 446: 315-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18603131

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines. TRAIL has gained much attention because of its ability to preferentially kill tumor cells with no apparent toxic side effects. Recently, different TRAIL receptor agonists, including TRAIL itself and various agonistic monoclonal antibodies against the two apoptosis-inducing human TRAIL receptors, have been developed as novel cancer therapeutics and are currently under investigation in clinical trials. However, the mechanisms by which TRAIL mediates its selective antineoplastic activity are still not well understood. In addition to playing a role in cancer immune surveillance and tumor suppression, TRAIL has been associated with immune homeostasis, inflammatory diseases, and autoimmunity. In light of the multifunctional role of TRAIL in mediating various pathologic conditions and the potential benefits of TRAIL-based therapies, the study of the physiologic significance of TRAIL is of great importance. Here, we describe a syngeneic system for the characterization of the in vivo function of TRAIL. By use of this model, in which the full-length murine TRAIL protein is overexpressed in the hematopoietic cells of wild-type mice, the in vivo tumoricidal activity of TRAIL overexpression can be studied on syngeneic murine tumor cell challenge, and the potential toxicity of TRAIL protein to normal tissues can also be analyzed.


Assuntos
Transplante de Medula Óssea/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Transplante de Medula Óssea/métodos , Imuno-Histoquímica/métodos , Camundongos , Retroviridae/genética , Baço/patologia , Transdução Genética/métodos
13.
Adv Exp Med Biol ; 615: 25-45, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18437890

RESUMO

Mitochondria have long been known to be critical for cell survival due to their role in energy metabolism. However, not until the mid-1990s did it become evident that mitochondria are also active participants in programmed cell death (PCD). This chapter focuses mainly on the role the mitochondria in mammalian cell death and cancer progression and therapy.


Assuntos
Apoptose/fisiologia , Mitocôndrias/fisiologia , Animais , Citocromos c/metabolismo , Humanos
14.
Adv Exp Med Biol ; 615: 331-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18437901

RESUMO

For more than 100 years scientists have fervently sought the fundamental origins of tumorigenesis, with the ultimate hope of discovering a cure. Indeed, these efforts have led to a significant understanding that multiple genetic and molecular aberrations, such as increased proliferation and the inhibition of apoptosis, contribute to the canonical characteristics of cancer. Despite these advances in our knowledge, a more thorough understanding, such as the precise cells, which are the targets of neoplastic transformation, especially in solid tumors, is currently lacking. An emerging hypothesis in the field is that cancer arises and is sustained from a rare subpopulation of tumor cells with characteristics that are highly similar to stem cells, such as the ability to self-renew and differentiate. In addition, more recent studies indicate that stem cell self-renewal pathways that are active primarily during embryonic development and adult tissue repair may be aberrantly activated in various cancers. This chapter introduces the cancer stem cell hypothesis; explores evidence for the presence of cancer stem cells, particularly in leukemia; and discusses various classical stem cell self-renewal pathways in relation to cancer. Investigating the role of cancer stem cells in the context of the major characteristics of cancer, especially impaired apoptosis, offers great promise for the design of superior tumor-selective and apoptosis-inducing therapies.


Assuntos
Apoptose , Células-Tronco Neoplásicas/patologia , Animais , Humanos
15.
Adv Exp Med Biol ; 615: 47-79, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18437891

RESUMO

Apoptosis is a cell suicide program that plays a critical role in development and tissue homeostasis. The ability of cancer cells to evade this programmed cell death (PCD) is a major characteristic that enables their uncontrolled growth. The efficiency of chemotherapy in killing such cells depends on the successful induction of apoptosis, since defects in apoptosis signaling are a major cause of drug resistance. Over the past decades, much progress has been made in our understanding of apoptotic signaling pathways and their dysregulation in cancer progression and therapy. These advances have provided new molecular targets for proapoptotic cancer therapies that have recently been used in drug development. While most of those therapies are still at the preclinical stage, some of them have shown much promise in the clinic. Here, we review our current knowledge of apoptosis regulation in cancer progression and therapy, as well as the new molecular targeted molecules that are being developed to reinstate cancer cell death.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Progressão da Doença , Humanos , Neoplasias/metabolismo
16.
Cancer Res ; 66(12): 6304-11, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16778207

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines and has been shown to induce cell death in many types of tumor and transformed cells but not in normal cells. This tumor-selective property has made TRAIL a promising candidate for the development of cancer therapy. However, safety issues are a concern because certain preparations of recombinant TRAIL protein were reported to induce toxicity in normal human hepatocytes in culture. In addition, previous studies on tumor selectivity of exogenous TRAIL protein were carried out in xenograft models, which do not directly address the tumor selectivity issue. It was not known whether exogenous or overexpression of TRAIL in a syngeneic system could induce tumor cell death while leaving normal tissue cells unharmed. Thus, the tumor selectivity of TRAIL-induced apoptosis remains to be further characterized. In our study, we established mice that overexpress TRAIL by retroviral-mediated gene transfer in bone marrow cells followed by bone marrow transplantation. Our results show that TRAIL overexpression is not toxic to normal tissues, as analyzed by hematologic and histologic analyses of tissue samples from TRAIL-transduced mice. We show for the first time that TRAIL overexpression in hematopoietic cells leads to significant inhibition of syngeneic tumor growth in certain tumor lines. This approach may be used further to identify important molecules that regulate the sensitivity of tumor cells to TRAIL-induced cell death in vivo.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Terapia Genética/métodos , Células-Tronco Hematopoéticas/fisiologia , Glicoproteínas de Membrana/genética , Neoplasias Experimentais/terapia , Fator de Necrose Tumoral alfa/genética , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/biossíntese , Células da Medula Óssea/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Células-Tronco Hematopoéticas/metabolismo , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Retroviridae/genética , Ligante Indutor de Apoptose Relacionado a TNF , Transdução Genética , Transfecção , Fator de Necrose Tumoral alfa/biossíntese
17.
Antioxid Redox Signal ; 28(1): 62-77, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398822

RESUMO

Precision in redox signaling is attained through posttranslational protein modifications such as oxidation of protein thiols. The peroxidase peroxiredoxin 1 (PRDX1) regulates signal transduction through changes in thiol oxidation of its cysteines. We demonstrate here that PRDX1 is a binding partner for the tumor suppressive transcription factor FOXO3 that directly regulates the FOXO3 stress response. Heightened oxidative stress evokes formation of disulfide-bound heterotrimers linking dimeric PRDX1 to monomeric FOXO3. Absence of PRDX1 enhances FOXO3 nuclear localization and transcription that are dependent on the presence of Cys31 or Cys150 within FOXO3. Notably, FOXO3-T32 phosphorylation is constitutively enhanced in these mutants, but nuclear translocation of mutant FOXO3 is restored with PI3K inhibition. Here we show that on H2O2 exposure, transcription of tumor suppressive miRNAs let-7b and let-7c is regulated by FOXO3 or PRDX1 expression levels and that let-7c is a novel target for FOXO3. Conjointly, inhibition of let-7 microRNAs increases let-7-phenotypes in PRDX1-deficient breast cancer cells. Altogether, these data ascertain the existence of an H2O2-sensitive PRDX1-FOXO3 signaling axis that fine tunes FOXO3 activity toward the transcription of gene targets in response to oxidative stress. Antioxid. Redox Signal. 28, 62-77.


Assuntos
Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Oxirredução , Peroxirredoxinas/metabolismo , Interferência de RNA , Sítios de Ligação , Linhagem Celular , Movimento Celular , Dissulfetos , Humanos , Modelos Biológicos , Estresse Oxidativo , Peroxirredoxinas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico
18.
Biochim Biophys Acta ; 1765(2): 178-88, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16406676

RESUMO

Angiogenesis plays a critical role in the growth and metastasis of tumors. Thrombospondin-1 (TSP-1) is a potent angiogenesis inhibitor, and down-regulation of TSP-1 has been suggested to alter tumor growth by modulating angiogenesis in a variety of tumor types. Expression of TSP-1 is up-regulated by the tumor suppressor gene, p53, and down-regulated by oncogenes such as Myc and Ras. TSP-1 inhibits angiogenesis by inhibiting endothelial cell migration and proliferation and by inducing apoptosis. In addition, activation of transforming growth factor beta (TGF-beta) by TSP-1 plays a crucial role in the regulation of tumor progression. An understanding of the molecular basis of TSP-1-mediated inhibition of angiogenesis and tumor progression will aid in the development of novel therapeutics for the treatment of cancer.


Assuntos
Inibidores da Angiogênese/fisiologia , Neoplasias/irrigação sanguínea , Neovascularização Patológica/metabolismo , Trombospondina 1/fisiologia , Animais , Humanos
19.
Cancer Res ; 65(18): 8286-97, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16166305

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to have selective antitumor activity. TRAIL induces ubiquitous pathways of cell death in which caspase activation is mediated either directly or via the release of apoptogenic factors from mitochondria; however, the precise components of the mitochondrial signaling pathway have not been well defined. Notably, mitochondria constitute an important target in overcoming resistance to TRAIL in many types of tumors. Bid is considered to be fundamental in engaging mitochondria during death receptor-mediated apoptosis, but this action is dependent on mitochondrial lipids. Here, we report that TRAIL signaling induces an alteration in mitochondrial membrane lipids, particularly cardiolipin. This occurs independently of caspase activation and primes mitochondrial membranes to the proapoptotic action of Bid. We unveil a link between TRAIL signaling and alteration of membrane lipid homeostasis that occurs in parallel to apical caspase activation but does not take over the mode of cell death because of the concurrent activation of caspase-8. In particular, TRAIL-induced alteration of mitochondrial lipids follows an imbalance in the cellular homeostasis of phosphatidylcholine, which results in an elevation in diacylglycerol (DAG). Elevated DAG in turn activates the delta isoform of phospholipid-dependent serine/threonine protein kinase C, which then accelerates the cleavage of caspase-8. We also show that preservation of phosphatidylcholine homeostasis by inhibition of lipid-degrading enzymes almost completely impedes the activation of pro-caspase-9 while scarcely changing the activation of caspase-8.


Assuntos
Proteínas Reguladoras de Apoptose/farmacologia , Cardiolipinas/metabolismo , Glicoproteínas de Membrana/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspases/metabolismo , Diglicerídeos/biossíntese , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Células Jurkat , Potenciais da Membrana/efeitos dos fármacos , Fosfolipases/metabolismo , Proteína Quinase C-delta/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF
20.
Biochem J ; 387(Pt 1): 109-18, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15500442

RESUMO

Bid is a BH3-only member of the Bcl-2 family that regulates cell death at the level of mitochondrial membranes. Bid appears to link the mitochondrial pathway with the death receptor-mediated pathway of cell death. It is generally assumed that the f.l. (full-length) protein becomes activated after proteolytic cleavage, especially by apical caspases like caspase 8. The cleaved protein then relocates to mitochondria and promotes membrane permeabilization, presumably by interaction with mitochondrial lipids and other Bcl-2 proteins that facilitate the release of apoptogenic proteins like cytochrome c. Although the major action may reside in the C-terminus part, tBid (cleaved Bid), un-cleaved Bid also has pro-apoptotic potential when ectopically expressed in cells or in vitro. This pro-apoptotic action of f.l. Bid has remained unexplained, especially at the biochemical level. In the present study, we show that f.l. (full-length) Bid can insert specific lysolipids into the membrane surface, thereby priming mitochondria for the release of apoptogenic factors. This is most effective for lysophosphatidylcholine species that we report to accumulate in mitochondria during apoptosis induction. A Bid mutant that is not pro-apoptotic in vivo is defective in lysophosphatidylcholine-mediated membrane perturbation in vitro. Our results thus provide a biochemical explanation for the pro-apoptotic action of f.l. Bid.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Lisofosfatidilcolinas/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Cardiolipinas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Células Jurkat/metabolismo , Masculino , Espectrometria de Massas/métodos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mutação/genética , Mutação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa