Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Soc Nephrol ; 34(5): 772-792, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758124

RESUMO

SIGNIFICANCE STATEMENT: AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND: Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS: Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS: We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS: CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , NAD/metabolismo , Restrição Calórica , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Hipóxia
2.
Kidney Int ; 102(3): 560-576, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654224

RESUMO

Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction--induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Restrição Calórica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Rim/metabolismo , Masculino , Camundongos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
3.
Eur Heart J ; 42(3): 257-265, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33241418

RESUMO

AIMS: Somatic mutations of the epigenetic regulators DNMT3A and TET2 causing clonal expansion of haematopoietic cells (clonal haematopoiesis; CH) were shown to be associated with poor prognosis in chronic ischaemic heart failure (CHF). The aim of our analysis was to define a threshold of variant allele frequency (VAF) for the prognostic significance of CH in CHF. METHODS AND RESULTS: We analysed bone marrow and peripheral blood-derived cells from 419 patients with CHF by error-corrected amplicon sequencing. Cut-off VAFs were optimized by maximizing sensitivity plus specificity from a time-dependent receiver operating characteristic (ROC) curve analysis from censored data. 56.2% of patients were carriers of a DNMT3A- (N = 173) or a TET2- (N = 113) mutation with a VAF >0.5%, with 59 patients harbouring mutations in both genes. Survival ROC analyses revealed an optimized cut-off value of 0.73% for TET2- and 1.15% for DNMT3A-CH-driver mutations. Five-year-mortality was 18% in patients without any detected DNMT3A- or TET2 mutation (VAF < 0.5%), 29% with only one DNMT3A- or TET2-CH-driver mutations above the respective cut-off level and 42% in patients harbouring both DNMT3A- and TET2-CH-driver mutations above the respective cut-off levels. In carriers of a DNMT3A mutation with VAF ≥ 1.15%, 5-year mortality was 31%, compared with 18% mortality in those with VAF < 1.15% (P = 0.048). Likewise, in patients with TET2 mutations, 5-year mortality was 32% with VAF ≥ 0.73%, compared with 19% mortality with VAF < 0.73% (P = 0.029). CONCLUSION: The present study defines novel threshold levels for clone size caused by acquired somatic mutations in the CH-driver genes DNMT3A and TET2 that are associated with worse outcome in patients with CHF.


Assuntos
Hematopoiese Clonal , Insuficiência Cardíaca , Células Clonais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases , Humanos , Mutação , Prognóstico , Proteínas Proto-Oncogênicas/genética
4.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067475

RESUMO

Acute kidney injury (AKI) is a frequent and critical complication in the clinical setting. In rodents, AKI can be effectively prevented through caloric restriction (CR), which has also been shown to increase lifespan in many species. In Caenorhabditis elegans (C. elegans), longevity studies revealed that a marked CR-induced reduction of endocannabinoids may be a key mechanism. Thus, we hypothesized that regulation of endocannabinoids, particularly arachidonoyl ethanolamide (AEA), might also play a role in CR-mediated protection from renal ischemia-reperfusion injury (IRI) in mammals including humans. In male C57Bl6J mice, CR significantly reduced renal IRI and led to a significant decrease of AEA. Supplementation of AEA to near-normal serum concentrations by repetitive intraperitoneal administration in CR mice, however, did not abrogate the protective effect of CR. We also analyzed serum samples taken before and after CR from patients of three different pilot trials of dietary interventions. In contrast to mice and C. elegans, we detected an increase of AEA. We conclude that endocannabinoid levels in mice are modulated by CR, but CR-mediated renal protection does not depend on this effect. Moreover, our results indicate that modulation of endocannabinoids by CR in humans may differ fundamentally from the effects in animal models.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Endocanabinoides/metabolismo , Adulto , Idoso , Animais , Ácidos Araquidônicos/metabolismo , Caenorhabditis elegans/metabolismo , Restrição Calórica/métodos , Modelos Animais de Doenças , Feminino , Humanos , Rim/metabolismo , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Alcamidas Poli-Insaturadas/metabolismo , Traumatismo por Reperfusão/metabolismo
6.
ESC Heart Fail ; 8(3): 1873-1884, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779075

RESUMO

AIMS: Somatic mutations in haematopoietic stem cells can lead to the clonal expansion of mutated blood cells, known as clonal haematopoiesis (CH). Mutations in the most prevalent driver genes DNMT3A and TET2 with a variant allele frequency (VAF) ≥ 2% have been associated with atherosclerosis and chronic heart failure of ischemic origin (CHF). However, the effects of mutations in other driver genes for CH with low VAF (<2%) on CHF are still unknown. METHODS AND RESULTS: Therefore, we analysed mononuclear bone marrow and blood cells from 399 CHF patients by deep error-corrected targeted sequencing of 56 genes and associated mutations with the long-term mortality in these patients (3.95 years median follow-up). We detected 1113 mutations with a VAF ≥ 0.5% in 347 of 399 patients, and only 13% had no detectable CH. Despite a high prevalence of mutations in the most frequently mutated genes DNMT3A (165 patients) and TET2 (107 patients), mutations in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2 were associated with increased death compared with the average death rate of all patients. To avoid confounding effects, we excluded patients with DNMT3A-related, TET2-related, and other clonal haematopoiesis of indeterminate potential (CHIP)-related mutations with a VAF ≥ 2% for further analyses. Kaplan-Meier survival analyses revealed a significantly higher mortality in patients with mutations in either of the seven genes (53 patients), combined as the CH-risk gene set for CHF. Baseline patient characteristics showed no significant differences in any parameter including patient age, confounding diseases, severity of CHF, or blood cell parameters except for a reduced number of platelets in patients with mutations in the risk gene set in comparison with patients without. However, carrying a mutation in any of the risk genes remained significant after multivariate cox regression analysis (hazard ratio, 3.1; 95% confidence interval, 1.8-5.4; P < 0.001), whereas platelet numbers did not. CONCLUSIONS: Somatic mutations with low VAF in a distinct set of genes, namely, in CBL, CEBPA, EZH2, GNB1, PHF6, SMC1A, and SRSF2, are significantly associated with mortality in CHF, independently of the most prevalent CHIP-mutations in DNMT3A and TET2. Mutations in these genes are prevalent in young CHF patients and comprise an independent risk factor for the outcome of CHF, potentially providing a novel tool for risk assessment in CHF.


Assuntos
Hematopoiese Clonal , Insuficiência Cardíaca , Proteínas de Ligação a DNA/genética , Insuficiência Cardíaca/genética , Humanos , Mutação , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa