Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 251: 114504, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634482

RESUMO

Lepidopteran species can be both pests and also beneficial pollinators for agricultural crops. However, despite these important roles, the effects of pesticides on this diverse taxa are relatively understudied. To facilitate the assessment of pesticides and other chemical hazards on this taxa, we present a novel bioassay capable of testing chemical sensitivity to lepidopteran larvae through dietary exposure. We used Mamestra brassicae caterpillars as a model lepidopteran and tested their sensitivity for the organophosphate insecticide chlorpyrifos. We exposed larvae to an artificial diet spiked with chlorpyrifos and monitored survival over time, as well as weight change over a 96-hour exposure period. To test the repeatability and reliability of the developed bioassay, the experiment was repeated three times. The survival in time data collected enabled analysis with the General Unified Threshold of Survival (GUTS) model, recently recognized by EFSA as a ready-to-use tool for regulatory purposes. The GUTS modelling was used to derive a set of relevant toxicokinetic and toxicodynamic parameters relating to the larval response to exposure over time. We found that across the three repeats studies there was no more than a threefold difference in LC50 values (13.1, 18.7 and 8.1 mg/Kg) at 48 h and fourfold difference at 96 h, highlighting the repeatability of the bioassay. We also highlighted the potential of the method to observe sub-lethal effects such as changes in weight. Finally, we discuss the applications of this new bioassay method to chemical risk assessments and its potential for use in other scenarios, such as mixture or pulsed exposure testing.


Assuntos
Clorpirifos , Mariposas , Praguicidas , Animais , Clorpirifos/toxicidade , Reprodutibilidade dos Testes , Praguicidas/toxicidade , Larva , Bioensaio
2.
Environ Res ; 207: 112216, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656630

RESUMO

Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Agricultura , Biodiversidade , Florestas
3.
Glob Chang Biol ; 27(19): 4575-4591, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118093

RESUMO

Amazonian rainforests, once thought to be pristine wilderness, are increasingly known to have been widely inhabited, modified, and managed prior to European arrival, by human populations with diverse cultural backgrounds. Amazonian Dark Earths (ADEs) are fertile soils found throughout the Amazon Basin, created by pre-Columbian societies with sedentary habits. Much is known about the chemistry of these soils, yet their zoology has been neglected. Hence, we characterized soil fertility, macroinvertebrate communities, and their activity at nine archeological sites in three Amazonian regions in ADEs and adjacent reference soils under native forest (young and old) and agricultural systems. We found 673 morphospecies and, despite similar richness in ADEs (385 spp.) and reference soils (399 spp.), we identified a tenacious pre-Columbian footprint, with 49% of morphospecies found exclusively in ADEs. Termite and total macroinvertebrate abundance were higher in reference soils, while soil fertility and macroinvertebrate activity were higher in the ADEs, and associated with larger earthworm quantities and biomass. We show that ADE habitats have a unique pool of species, but that modern land use of ADEs decreases their populations, diversity, and contributions to soil functioning. These findings support the idea that humans created and sustained high-fertility ecosystems that persist today, altering biodiversity patterns in Amazonia.


Assuntos
Ecossistema , Solo , Agricultura , Biodiversidade , Humanos , Microbiologia do Solo
4.
Environ Sci Technol ; 55(5): 3059-3069, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33559465

RESUMO

Neonicotinoids are currently licensed for use in 120 countries, making accurate nontarget species sensitivity predictions critical. Unfortunately, such predictions are fraught with uncertainty, as sensitivity is extrapolated from only a few test species and neonicotinoid sensitivities can differ greatly between closely related taxa. Combining classical toxicology with de novo toxicogenomics could greatly improve sensitivity predictions and identify unexpectedly susceptible species. We show that there is a >30-fold differential species sensitivity (DSS) for the neonicotinoid imidacloprid between five earthworm species, a critical nontarget taxon. This variation could not be explained by differential toxicokinetics. Furthermore, comparing key motif expression in subunit genes of the classical nicotinic acetylcholine receptor (nAChR) target predicts only minor differences in the ligand binding domains (LBDs). In contrast, predicted dissimilarities in LBDs do occur in the highly expressed but nonclassical targets, acetylcholine binding proteins (AChBPs). Critically, the predicted AChBP divergence is capable of explaining DSS. We propose that high expression levels of putative nonsynaptic AChBPs with high imidacloprid affinities reduce imidacloprid binding to critical nAChRs involved in vital synaptic neurotransmission. This study provides a clear example of how pragmatic interrogation of key motif expression in complex multisubunit receptors can predict observed DSS, thereby informing sensitivity predictions for essential nontarget species.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Oligoquetos , Receptores Nicotínicos/genética , Toxicogenética
5.
Small ; 16(21): e2000598, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32363795

RESUMO

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Assuntos
Imunidade Inata , Nanoestruturas , Medição de Risco , Imunidade Adaptativa , Animais , Imunidade Inata/efeitos dos fármacos , Nanoestruturas/toxicidade , Medição de Risco/métodos
6.
Environ Res ; 176: 108507, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203050

RESUMO

During the last few years, there has been an alarming increase in the amount of nickel (Ni) being released into the environment, primarily due to its use in the production of stainless steel but also from other sources such as batteries manufacturing and consequent disposal. The established biotic ligand models provide precise estimates for Ni bioavailability, in contrast, studies describing the mechanisms underpinning toxicological effect of Ni are scarce. This study exploits RNA-seq to determine the transcriptomic responses of isopods using Porcellionides pruinosus as an example of a terrestrial metal-resistant woodlouse. Furthermore, the recently proposed model for Ni adverse outcome pathways (Ni-AOP) presents an unprecedented opportunity to fit isopod responses to Ni toxicity and define Porcellionides pruinosus as a metalomic model. Prior to this study, P. pruinosus represented an important environmental sentinel, though lacking genetic/omic data. The reference transcriptome generated here thus represents a major advance and a novel resource. A detailed annotation of the transcripts obtained is presented together with the homology to genes/gene products from Metazoan and Arthropoda phylum, Gene Ontology (GO) classification, clusters of orthologous groups (COG) and assignment to KEGG metabolic pathways. The differential gene expression comparison was determined in response to nickel (Ni) exposure and used to derive the enriched pathways and processes. It revealed a significant impact on ion trafficking and storage, oxidative stress, neurotoxicity, reproduction impairment, genetics and epigenetics. Many of the processes observed support the current Ni-AOP although the data highlights that the current model can be improved by including epigenetic endpoints, which represents key chronic risks under a scenario of Ni toxicity.


Assuntos
Poluentes Ambientais , Isópodes , Níquel , Animais , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Níquel/farmacocinética , Níquel/toxicidade , Estresse Oxidativo , Reprodução , Transcriptoma
7.
BMC Genet ; 18(1): 97, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149838

RESUMO

BACKGROUND: Populations of the earthworm, Lumbricus rubellus, are commonly found across highly contaminated former mine sites and are considered to have under-gone selection for mitigating metal toxicity. Comparison of adapted populations with those found on less contaminated soils can provide insights into ecological processes that demonstrate the long-term effects of soil contamination. Contemporary sequencing methods allow for portrayal of demographic inferences and highlight genetic variation indicative of selection at specific genes. Furthermore, the occurrence of L. rubellus lineages across the UK allows for inferences of mechanisms associated with drivers of speciation and local adaptation. RESULTS: Using RADseq, we were able to define population structure between the two lineages through the use of draft genomes for each, demonstrating an absence of admixture between lineages and that populations over extensive geographic distances form discrete populations. Between the two British lineages, we were able to provide evidence for selection near to genes associated with epigenetic and morphological functions, as well as near a gene encoding a pheromone. Earthworms inhabiting highly contaminated soils bare close genomic resemblance to those from proximal control soils. We were able to define a number of SNPs that largely segregate populations and are indicative of genes that are likely under selection for managing metal toxicity. This includes calcium and phosphate-handling mechanisms linked to lead and arsenic contaminants, respectively, while we also observed evidence for glutathione-related mechanisms, including metallothionein, across multiple populations. Population genomic end points demonstrate no consistent reduction in nucleotide diversity, or increase in inbreeding coefficient, relative to history of exposure. CONCLUSIONS: Though we can clearly define lineage membership using genomic markers, as well as population structure between geographic localities, it is difficult to resolve markers that segregate entirely between populations in response to soil metal concentrations. This may represent a highly variable series of traits in response to the heterogenous nature of the soil environment, but ultimately demonstrates the maintenance of lineage-specific genetic variation among local populations. L. rubellus appears to provide an exemplary system for exploring drivers for speciation, with a continuum of lineages coexisting across continental Europe, while distinct lineages exist in isolation throughout the UK.


Assuntos
Metais Pesados/química , Mineração , Oligoquetos/genética , Poluentes do Solo/química , Solo/química , Animais , Oligoquetos/metabolismo , Polimorfismo de Nucleotídeo Único , Reino Unido
8.
Biochem J ; 473(16): 2531-44, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27274087

RESUMO

There is growing evidence that zinc and its transporters are involved in cell migration during development and in cancer. In the present study, we show that zinc transporter ZIP10 (SLC39A10) stimulates cell motility and proliferation, both in mammalian cells and in the zebrafish embryo. This is associated with inactivation of GSK (glycogen synthase kinase)-3α and -3ß and down-regulation of E-cadherin (CDH1). Morpholino-mediated knockdown of zip10 causes delayed epiboly and deformities of the head, eye, heart and tail. Furthermore, zip10 deficiency results in overexpression of cdh1, zip6 and stat3, the latter gene product driving transcription of both zip6 and zip10 The non-redundant requirement of Zip6 and Zip10 for epithelial to mesenchymal transition (EMT) is consistent with our finding that they exist as a heteromer. We postulate that a subset of ZIPs carrying prion protein (PrP)-like ectodomains, including ZIP6 and ZIP10, are integral to cellular pathways and plasticity programmes, such as EMT.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Movimento Celular , Desenvolvimento Embrionário , Zinco/metabolismo , Animais , Células CHO , Proteínas de Transporte de Cátions/classificação , Adesão Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cricetulus , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células MCF-7 , Masculino , Filogenia , Peixe-Zebra/embriologia
9.
Ecotoxicology ; 25(2): 267-78, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581474

RESUMO

Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment.


Assuntos
Isópodes/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Poluentes do Solo/toxicidade , Animais , Feminino , Masculino , Portugal , Toxicocinética
10.
Environ Microbiol ; 17(6): 1884-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25404571

RESUMO

Earthworms are globally distributed and perform essential roles for soil health and microbial structure. We have investigated the effect of an anthropogenic contamination gradient on the bacterial community of the keystone ecological species Lumbricus rubellus through utilizing 16S rRNA pyrosequencing for the first time to establish the microbiome of the host and surrounding soil. The earthworm-associated microbiome differs from the surrounding environment which appears to be a result of both filtering and stimulation likely linked to the altered environment associated with the gut micro-habitat (neutral pH, anoxia and increased carbon substrates). We identified a core earthworm community comprising Proteobacteria (∼50%) and Actinobacteria (∼30%), with lower abundances of Bacteroidetes (∼6%) and Acidobacteria (∼3%). In addition to the known earthworm symbiont (Verminephrobacter sp.), we identified a potential host-associated Gammaproteobacteria species (Serratia sp.) that was absent from soil yet observed in most earthworms. Although a distinct bacterial community defines these earthworms, clear family- and species-level modification were observed along an arsenic and iron contamination gradient. Several taxa observed in uncontaminated control microbiomes are suppressed by metal/metalloid field exposure, including eradication of the hereto ubiquitously associated Verminephrobacter symbiont, which raises implications to its functional role in the earthworm microbiome.


Assuntos
Arsênio/farmacologia , Microbiota/genética , Oligoquetos/efeitos dos fármacos , Oligoquetos/microbiologia , Poluentes do Solo/farmacologia , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Comamonadaceae/genética , Comamonadaceae/isolamento & purificação , Ecossistema , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , RNA Ribossômico 16S/genética , Solo/química , Poluentes do Solo/análise
11.
J Exp Bot ; 66(3): 945-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422499

RESUMO

Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lilium/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Lilium/genética , Lilium/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Parasitology ; 142(12): 1469-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26282621

RESUMO

Changes to host behaviour induced by some trematode species, as a means of increased trophic transmission, represents one of the seminal examples of host manipulation by a parasite. The amphipod Echinogammarus marinus (Leach, 1815) is infected with a previously undescribed parasite, with infected individuals displaying positive phototaxic and negative geotaxic behaviour. This study reveals that the unknown parasite encysts in the brain, nerve cord and the body cavity of E. marinus, and belongs to the Microphallidae family. An 18 month population study revealed that host abundance significantly and negatively correlated with parasite prevalence. Investigation of the trematode's influence at the transcriptomic level revealed genes with putative neurological functions, such as serotonin receptor 1A, an inebriated-like neurotransmitter, tryptophan hydroxylase and amino acid decarboxylase, present consistent altered expression in infected animals. Therefore, this study provides one of the first transcriptomic insights into the neuronal gene pathways altered in amphipods infected with a trematode parasite associated with changes to its host's behaviour and population structure.


Assuntos
Anfípodes/parasitologia , Comportamento Animal , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Trematódeos , Acantocéfalos/fisiologia , Anfípodes/genética , Anfípodes/crescimento & desenvolvimento , Anfípodes/fisiologia , Animais , Sequência de Bases , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Estações do Ano , Análise de Sequência de DNA/veterinária , Trematódeos/classificação , Trematódeos/genética , Trematódeos/isolamento & purificação , Trematódeos/fisiologia
13.
Ecotoxicology ; 24(2): 239-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25516483

RESUMO

Initiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10 years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs. Studies to date have shown that ENPs undergo a range of physical and chemical transformations in the environment to the extent that exposures to pristine well dispersed materials will occur only rarely in nature. Methods to track assimilation and internal distributions must, therefore, be capable of detecting these modified forms. The uptake mechanisms involved in ENP assimilation may include a range of trans-cellular trafficking and distribution pathways, which can be followed by passage to intracellular compartments. To trace toxicokinetics and distributions, analytical and imaging approaches are available to determine rates, states and forms. When used hierarchically, these tools can map ENP distributions to specific target organs, cell types and organelles, such as endosomes, caveolae and lysosomes and assess speciation states. The first decade of ENP ecotoxicology research, thus, points to an emerging paradigm where exposure is to transformed materials transported into tissues and cells via passive and active pathways within which they can be assimilated and therein identified using a tiered analytical and imaging approach.


Assuntos
Ecotoxicologia/métodos , Poluentes Ambientais/metabolismo , Peixes/metabolismo , Invertebrados/metabolismo , Nanopartículas Metálicas , Nanotubos de Carbono , Plantas/metabolismo , Animais , Monitoramento Ambiental , Poluentes Ambientais/farmacocinética , Óxidos/metabolismo , Óxidos/farmacocinética
14.
Biol Lett ; 10(9)2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25252836

RESUMO

Molecular genetic methods can distinguish divergent evolutionary lineages in what previously appeared to be single species, but it is not always clear what functional differences exist between such cryptic species. We used a metabolomic approach to profile biochemical phenotype (metabotype) differences between two putative cryptic species of the earthworm Lumbricus rubellus. There were no straightforward metabolite biomarkers of lineage, i.e. no metabolites that were always at higher concentration in one lineage. Multivariate methods, however, identified a small number of metabolites that together helped distinguish the lineages, including uncommon metabolites such as Nε-trimethyllysine, which is not usually found at high concentrations. This approach could be useful for characterizing functional trait differences, especially as it is applicable to essentially any species group, irrespective of its genome sequencing status.


Assuntos
Metabolômica/métodos , Oligoquetos/classificação , Oligoquetos/metabolismo , Animais , Lisina/análogos & derivados , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Análise Multivariada , Fenótipo , Especificidade da Espécie
15.
Environ Sci Technol ; 48(22): 13085-92, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25337783

RESUMO

Polychaetes are frequented in toxicological studies, one reason being that some members occupy shallow burrows in sediments and are maximally exposed to the contaminants that accumulate within them. We have been studying one population of the polychaete Nereis (Hediste) diversicolor exhibiting inheritable tolerance to extreme copper contamination in estuarine sediment. Using transcriptome sequencing data we have identified a suite of genes with putative roles in metal detoxification and tolerance, and measured their regulation. Copper tolerant individuals display significantly different gene expression profiles compared to animals from a nearby population living without remarkable copper levels. Gene transcripts encoding principle copper homeostasis proteins including membrane copper ion transporters, copper ion chaperones and putative metallothionein-like proteins were significantly more abundant in tolerant animals occupying contaminated sediment. In contrast, those encoding antioxidants and cellular repair pathways were unchanged. Nontolerant animals living in contaminated sediment showed no difference in copper homeostasis-related gene expression but did have significantly elevated levels of mRNAs encoding Glutathione Peroxidase enzymes. This study represents the first use of functional genomics to investigate the copper tolerance trait in this species and provides insight into the mechanism used by these individuals to survive and flourish in conditions which are lethal to their conspecifics.


Assuntos
Cobre/toxicidade , Poluição Ambiental/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Poliquetos/genética , Estresse Fisiológico/genética , Animais , Estuários , Sedimentos Geológicos/química , Anotação de Sequência Molecular , Poliquetos/efeitos dos fármacos , Poliquetos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Espectrofotometria Atômica , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/genética
16.
Environ Sci Technol ; 48(22): 13520-9, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25343324

RESUMO

The dysfunction associated with intersexuality in vertebrates and molluscs is often a serious threat to ecosystems. Although poorly understood, crustacean intersexuality is associated with contamination and includes forms linked to increased sex-ratio distorting parasites at polluted sites. Despite the importance of crustaceans for monitoring vulnerable aquatic habitats, little is known about the molecular basis of this abnormal sexual differentiation and any associated sexual dysfunction. To increase the relevance of crustaceans to environmental toxicologists, we comprehensively analyzed gene expression in amphipods presenting parasite- and nonparasite-associated intersexuality. Our findings reveal existing vertebrate biomarkers of feminization should not be applied to crustaceans, as orthologous genes are not induced in feminized amphipods. Furthermore, in contrast to vertebrates, where feminization and intersexuality is often associated with deleterious demasculinization, we find males maintain masculinity even when unambiguously feminized. This reveals a considerable regulatory separation of the gene pathways responsible for male and female characteristics and demonstrates that evidence of feminization (even if detected with appropriate biomarkers) is not a proxy for demasculinization in crustaceans. This study has also produced a comprehensive spectrum of potential molecular biomarkers that, when combined with our new molecular understanding, will greatly facilitate the use of crustaceans to monitor aquatic habitats.


Assuntos
Crustáceos/efeitos dos fármacos , Transtornos do Desenvolvimento Sexual/complicações , Ecotoxicologia , Disruptores Endócrinos/toxicidade , Caracteres Sexuais , Processos de Determinação Sexual , Diferenciação Sexual/efeitos dos fármacos , Anfípodes , Animais , Biomarcadores , Feminino , Feminização , Masculino , Ovariectomia , Diferenciação Sexual/fisiologia , Razão de Masculinidade , Especificidade da Espécie
17.
Biochem J ; 455(2): 229-37, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23919497

RESUMO

Genes involved in normal developmental processes attract attention as mediators of tumour progression as they facilitate migration of tumour cells. EMT (epithelial-mesenchymal transition), an essential part of embryonic development, tissue remodelling and wound repair, is crucial for tumour metastasis. Previously, zinc transporter ZIP6 [SLC39A6; solute carrier family 39 (zinc transporter), member 6; also known as LIV-1) was linked to EMT in zebrafish gastrulation through a STAT3 (signal transducer and activator of transcription 3) mechanism, resulting in nuclear localization of transcription factor Snail. In the present study, we show that zinc transporter ZIP6 is transcriptionally induced by STAT3 and unprecedented among zinc transporters, and is activated by N-terminal cleavage which triggers ZIP6 plasma membrane location and zinc influx. This zinc influx inactivates GSK-3ß (glycogen synthase kinase 3ß), either indirectly or directly via Akt or GSK-3ß respectively, resulting in activation of Snail, which remains in the nucleus and acts as a transcriptional repressor of E-cadherin (epithelial cadherin), CDH1, causing cell rounding and detachment. This was mirrored by ZIP6-transfected cells which underwent EMT, detached from monolayers and exhibited resistance to anoikis by their ability to continue proliferating even after detachment. Our results indicate a causative role for ZIP6 in cell motility and migration, providing ZIP6 as a new target for prediction of clinical cancer spread and also suggesting a ZIP6-dependent mechanism of tumour metastasis.


Assuntos
Proteínas de Transporte de Cátions/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Neoplasias/genética , Fator de Transcrição STAT3/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células CHO , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Cricetulus , Feminino , Regulação Neoplásica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
18.
Sci Total Environ ; 917: 170405, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280602

RESUMO

The functional conservation of important selective serotonin reuptake inhibitor (SSRI) targets in non-target organisms raises concerns about their potential adverse effects on the ecosystems. Although the environmental levels of SSRIs like paroxetine (PAR) have risen, the knowledge regarding the effects of long-term exposure to PAR is limited. This study investigated the impact of sub-chronic exposure (21 days) to two sub-lethal concentrations of PAR (40 and 400 µg/L) on the behaviour of adult zebrafish in different scenarios: basal activity (under dark and light conditions), stress response (evoked by sudden light transitions) and stress response recovery. A new framework was employed for the integrative study of fish's swimming performance based on their innate ability to respond to light shifts. Several swimming-associated parameters (e.g., total swimming distance, time of inactivity, swimming angles) and thigmotaxis were monitored for an integrated analysis in each scenario. Data revealed reduced swimming activity, impaired behavioural response to stress and alterations in stress recovery of PAR-exposed fish. An anxiolytic effect was particularly noticeable in fish basal swimming activity in the dark at 400 µg/L and in the behavioural response to stress (from dark to light) and stress recovery (from light to dark) for organisms exposed to 40 µg/L. The detected PAR-induced behavioural modifications suggest a disruption of brain glucocorticoid signalling that may have implications at the individual level (e.g., changing behavioural responses to predators), with potential repercussions on the population and community levels. Therefore, the applied protocol proved sensitive in detecting behavioural changes induced by PAR.


Assuntos
Paroxetina , Poluentes Químicos da Água , Animais , Paroxetina/toxicidade , Peixe-Zebra , Ecossistema , Comportamento Animal , Inibidores Seletivos de Recaptação de Serotonina , Natação , Poluentes Químicos da Água/toxicidade
19.
Wellcome Open Res ; 8: 500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249959

RESUMO

We present a genome assembly from an individual Lumbricus terrestris (the common earthworm; Annelida; Clitellata; Haplotaxida; Lumbricidae). The genome sequence is 1,056.5 megabases in span. Most of the assembly is scaffolded into 18 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 15.93 kilobases in length.

20.
Sci Total Environ ; 900: 165706, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37499832

RESUMO

Paroxetine (PAR) is a selective serotonin reuptake inhibitor (SSRI) antidepressant increasingly detected in surface waters worldwide. Its environmental presence raises concerns about the potential detrimental effects on non-target organisms. Thus, this study aimed to increase knowledge on PAR's potential environmental impacts, assessing the effects of commercial formulation (PAR-c) and active ingredient (PAR-a) on fish. Therefore, the short-term exposure effects of PAR-c and PAR-a were assessed on zebrafish (Danio rerio) embryos/larvae to determine the most toxic formulation [through median lethal (LC50) and effective concentrations (EC50)]. PAR-c and PAR-a induced morphological abnormalities (scoliosis) in a dose-dependent manner from 96 hours post-fertilization onwards, suggesting the involvement of a fully functional biotransformation system. As PAR-c exhibited higher toxicity, it was selected to be tested in the subsequent stage (juvenile stage), which was more sensitive (lower LC50). PAR-c significantly decreased fish swimming activity and disrupted fish stress response. Overall, the results highlight the ability of PAR-c to adversely affect fish swimming performance, an effect that persisted even after exposure ceases (21-day depuration), suggesting that PAR-c may impair individual fitness.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Paroxetina/toxicidade , Embrião não Mamífero , Inibidores Seletivos de Recaptação de Serotonina , Dose Letal Mediana , Larva , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa