Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921558

RESUMO

Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sargassum , Xantofilas , Zika virus , Antivirais/farmacologia , Antivirais/isolamento & purificação , Antivirais/química , Zika virus/efeitos dos fármacos , Animais , Sargassum/química , Chlorocebus aethiops , Xantofilas/farmacologia , Xantofilas/isolamento & purificação , Xantofilas/química , Células Vero , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
2.
Mar Drugs ; 21(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504900

RESUMO

Microalgae are proposed to have powerful applications for human health in the pharmaceutical and food industries. Tetraselmis species (sp.), which are green microalgae, were identified as a source of broad-spectrum health-promoting biological activities. However, the bioactivity of these species has not been elucidated. We aimed to confirm the antioxidant, antiviral, and anti-inflammatory effects of Tetraselmis sp. extract (TEE). TEE showed 2,2-diphenyl-1-picryl-hydrazyl-hydrate radical and hydrogen peroxide scavenging activities and reduced plaque formation in Vero E6 cells infected with vaccinia virus. TEE treatment also significantly inhibited nitric oxide (NO) production and improved cell viability in lipopolysaccharide (LPS)-induced RAW264.7 cells. These anti-inflammatory effects were further analyzed in LPS-induced RAW 264.7 cells and the zebrafish model. Further, TEE reduced induced NO synthase expression and proinflammatory cytokine release, including tumor necrosis factor-α, interleukin-6, and interleukin-1ß, through MAPKs and NF-κB-dependent mechanisms. Further analysis revealed that TEE increased the survival rate and reduced cell death and NO production in an LPS-stimulated zebrafish model. Further, high-performance liquid chromatography revealed a strong presence of the carotenoid lutein in TEE. Overall, the results suggest that lutein-enriched TEE may be a potent antioxidant, antiviral, and anti-inflammatory agent that could be sustainably utilized in industrial applications.


Assuntos
Antioxidantes , Luteína , Animais , Camundongos , Humanos , Antioxidantes/farmacologia , Luteína/farmacologia , Luteína/metabolismo , Peixe-Zebra/metabolismo , Lipopolissacarídeos/farmacologia , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Células RAW 264.7 , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
3.
Mar Drugs ; 21(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37623739

RESUMO

The objective of this study was to prepare an angiotensin I-converting enzyme (ACE)-inhibitory peptide from the hydrothermal vent mussel, Gigantidas vrijenhoeki. The G. vrijenhoeki protein was hydrolyzed by various hydrolytic enzymes. The peptic hydrolysate exhibited the highest ACE-inhibitory activity and was fractionated into four molecular weight ranges by ultrafiltration. The <1 kDa fraction exhibited the highest ACE inhibitory activity and was found to have 11 peptide sequences. Among the analyzed peptides, KLLWNGKM exhibited stronger ACE inhibitory activity and an IC50 value of 0.007 µM. To investigate the ACE-inhibitory activity of the analyzed peptides, a molecular docking study was performed. KLLWNGKM exhibited the highest binding energy (-1317.01 kcal/mol), which was mainly attributed to the formation of hydrogen bonds with the ACE active pockets, zinc-binding motif, and zinc ion. These results indicate that G. vrijenhoeki-derived peptides can serve as nutritional and pharmacological candidates for controlling blood pressure.


Assuntos
Mytilidae , Peptidil Dipeptidase A , Animais , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Zinco
4.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958757

RESUMO

A new calicivirus isolated from a walrus was reported in 2004. Since unknown marine mammalian zoonotic viruses could pose great risks to human health, this study aimed to develop therapeutic countermeasures to quell any potential outbreak of a pandemic caused by this virus. We first generated a 3D model of the walrus calicivirus capsid protein and identified compounds from marine natural products, especially phlorotannins, as potential walrus calicivirus inhibitors. A 3D model of the target protein was generated using homology modeling based on two publicly available template sequences. The sequence of the capsid protein exhibited 31.3% identity and 42.7% similarity with the reference templates. The accuracy and reliability of the predicted residues were validated via Ramachandran plotting. Molecular docking simulations were performed between the capsid protein 3D model and 17 phlorotannins. Among them, five phlorotannins demonstrated markedly stable docking profiles; in particular, 2,7-phloroglucinol-6,6-bieckol showed favorable structural integrity and stability during molecular dynamics simulations. The results indicate that the phlorotannins are promising walrus calicivirus inhibitors. Overall, the study findings showcase the rapid turnaround of in silico-based drug discovery approaches, providing useful insights for developing potential therapies against novel pathogenic viruses, especially when the 3D structures of the viruses remain experimentally unknown.


Assuntos
Vírus de RNA , Morsas , Animais , Humanos , Proteínas do Capsídeo , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes
5.
Mar Drugs ; 20(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200662

RESUMO

In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum albumin (BSA)-induced BMCMCs degranulation by reducing the release of ß-hexosaminidase without inducing cytotoxicity. Further, DHB dose-dependently decreased the IgE binding and high-affinity IgE receptor (FcεRI) expression and FcεRI-IgE binding on the surface of BMCMCs. Moreover, DHB suppressed the secretion and/or the expression of the allergic cytokines, interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF)-α, and the chemokine, thymus activation-regulated chemokine (TARC), by regulating the phosphorylation of IκBα and the translocation of cytoplasmic NF-κB into the nucleus. Furthermore, DHB attenuated the passive cutaneous anaphylactic (PCA) reaction reducing the exuded Evans blue amount in the mouse ear stimulated by IgE/BSA. These results suggest that DHB is a potential therapeutic candidate for the prevention and treatment of type I allergic disorders.


Assuntos
Antialérgicos/farmacologia , Benzaldeídos/farmacologia , Catecóis/farmacologia , Mastócitos/efeitos dos fármacos , Rodófitas/metabolismo , Animais , Antialérgicos/administração & dosagem , Antialérgicos/isolamento & purificação , Benzaldeídos/administração & dosagem , Benzaldeídos/isolamento & purificação , Catecóis/administração & dosagem , Catecóis/isolamento & purificação , Células Cultivadas , Citocinas/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imunoglobulina E/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Anafilaxia Cutânea Passiva/imunologia , Soroalbumina Bovina/imunologia
6.
Mar Drugs ; 20(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135752

RESUMO

Polysiphonia morrowii is a well-known red alga that has promising pharmacological characteristics. The current study evaluates the protective effect of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) isolated from P. morrowii on tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated inflammation and skin barrier deterioration in HaCaT keratinocytes. The anti-inflammatory effect of BDB in TNF-α/IFN-γ-stimulated HaCaT keratinocytes is evaluated by investigating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, inflammatory cytokines, and chemokines. Further, the interaction between BDB and the skin barrier functions in stimulated HaCaT keratinocytes is investigated. The findings of the study reveal that BDB dose-dependently increases cell viability while decreasing intracellular reactive oxygen species (ROS) production. BDB downregulates the expression of inflammatory cytokines, interleukin (IL)-6, -8, -13, IFN-γ, TNF-α, and chemokines, Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cells expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC) by modulating the MAPK and NF-κB signaling pathways in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. Furthermore, BDB increases the production of skin hydration proteins and tight junction proteins in stimulated HaCaT keratinocytes by preserving skin moisturization and tight junction stability. These findings imply that BDB exhibits a protective ability against inflammation and deterioration of skin barrier via suppressing the expression of inflammatory signaling in TNF-α/IFN-γ-stimulated HaCaT keratinocytes.


Assuntos
Benzaldeídos , Queratinócitos , Rodófitas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Benzaldeídos/farmacologia , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucinas/metabolismo , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodófitas/química , Fator de Transcrição STAT1/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
BMC Med Educ ; 22(1): 161, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260153

RESUMO

BACKGROUND: The COVID-19 pandemic has threatened the stability and adequacy of the global healthcare system. In this situation, authorities have considered engaging medical and nursing students to address the shortage of frontline healthcare workers. This study investigated the effect of COVID-19-related knowledge, attitudes, and preventive behaviors on medical and nursing students' willingness to care for COVID-19 patients. METHODS: Medical and nursing students from universities in two regions of South Korea participated in this cross-sectional study. A total of 330 questionnaires were distributed; of them, 99.3% were collected, and 315 questionnaires were analyzed. Data were collected on participants' general characteristics, COVID-19-related knowledge, attitudes, and preventive behaviors, and willingness to care for COVID-19 patients. RESULTS: In total, 66.3% of the participants were willing to care for patients during the COVID-19 pandemic. Students in higher grades and those with more clinical practice experience showed higher levels of willingness to care. Specifically, willingness to care was correlated with the senior year (OR = 3.58, 95% CI = 1.24 - 10.37, p = .019), a high level of COVID-19-related knowledge (OR = 1.03, 95% CI = 1.00 - 1.05, p = .041), an optimistic attitude that COVID-19 can be overcome (OR = 1.63, 95% CI = 1.24 - 2.14, p < .001), and increased engagement in infection prevention behaviors (OR = 1.41, 95% CI = 1.16 - 1.71, p < .001). CONCLUSIONS: The findings indicated that a high level of knowledge regarding the COVID-19 pandemic, having an optimistic attitude, and engaging in preventive behaviors affected students' willingness to care for COVID-19 patients. Integrating disaster preparedness courses in the early years of their curriculum could increase future healthcare providers' willingness to care for patients.


Assuntos
COVID-19 , Estudantes de Medicina , Estudantes de Enfermagem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Pandemias/prevenção & controle , República da Coreia , SARS-CoV-2 , Inquéritos e Questionários
8.
Mar Drugs ; 19(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34677466

RESUMO

Turbo cornutus, the horned turban sea snail, is found along the intertidal and basaltic shorelines of Jeju Island, Korea. T. cornutus feeds on seaweeds (e.g., Undaria sp., and Ecklonia sp.) composed of diverse antioxidants. This study identified potential antioxidant properties from T. cornutus viscera tissues. Diverse extracts were evaluated for their hydrogen peroxide (H2O2) scavenging activities. T. cornutus viscera protamex-assisted extracts (TVP) were purified by gel filtration chromatography (GFC), and potential antioxidant properties were analyzed for their amino acid sequences and its peroxidase inhibition effects by in silico molecular docking and in vitro analysis. According to the results, T. cornutus viscera tissues are composed of many protein contents with each over 50%. Among the extracts, TVP possessed the highest H2O2 scavenging activity. In addition, TVP-GFC-3 significantly decreased intracellular reactive oxygen species (ROS) levels and increased cell viability in H2O2-treated HepG2 cells without cytotoxicity. TVP-GFC-3 comprises nine low molecular bioactive peptides (ELR, VGPQ, TDY, ALPHA, PAH, VDY, WSDK, VFSP, and FAPQY). Notably, the peptides dock to the active site of the myeloperoxidase (MPO), especially TDY and FAPQY showed the MPO inhibition effects with IC50 values of 646.0 ± 45.0 µM and 57.1 ± 17.7 µM, respectively. Altogether, our findings demonstrated that T. cornutus viscera have potential antioxidant properties that can be used as high value-added ingredients.


Assuntos
Antioxidantes/farmacologia , Sequestradores de Radicais Livres/farmacologia , Caramujos , Animais , Antioxidantes/química , Organismos Aquáticos , Células Hep G2/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Vísceras/química
9.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530496

RESUMO

S100 calcium-binding protein A8 (S100A8), a danger-associated molecular pattern, has emerged as an important mediator of the pro-inflammatory response. Some S100 proteins play a prominent role in neuroinflammatory disorders and increase the secretion of pro-inflammatory cytokines in microglial cells. The aim of this study was to determine whether S100A8 induced neuronal apoptosis during cerebral hypoxia and elucidate its mechanism of action. In this study, we reported that the S100A8 protein expression was increased in mouse neuronal and microglial cells when exposed to hypoxia, and induced neuroinflammation and neuronal apoptosis. S100A8, secreted from neurons under hypoxia, activated the secretion of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) through phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in microglia. Also, phosphorylation of ERK via the TLR4 receptor induced the priming of the NLRP3 inflammasome. The changes in Cyclooxygenase-2 (COX-2) expression, a well-known inflammatory activator, were regulated by the S100A8 expression in microglial cells. Knockdown of S100A8 levels by using shRNA revealed that microglial S100A8 expression activated COX-2 expression, leading to neuronal apoptosis under hypoxia. These results suggested that S100A8 may be an important molecule for bidirectional microglia-neuron communication and a new therapeutic target for neurological disorders caused by microglial inflammation during hypoxia.


Assuntos
Apoptose/genética , Calgranulina A/genética , Regulação da Expressão Gênica , Hipóxia/genética , Hipóxia/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Animais , Biomarcadores , Calgranulina A/metabolismo , Linhagem Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Fosforilação
10.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809569

RESUMO

The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-ß-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.


Assuntos
Portadores de Fármacos/química , Casco e Garras/efeitos dos fármacos , Casco e Garras/metabolismo , Permeabilidade/efeitos dos fármacos , Triazóis/administração & dosagem , Triazóis/química , Administração Tópica , Animais , Antifúngicos/administração & dosagem , Antifúngicos/química , Bovinos , Difusão , Sistemas de Liberação de Medicamentos/métodos , Onicomicose/tratamento farmacológico , Propilenoglicol/química
11.
Molecules ; 25(10)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438702

RESUMO

Fucoidan is a fucose-enriched polysaccharide, obtained from brown algae, with demonstrated antioxidant properties. However, traditional extraction methods using water or chemical-based extraction methods have reduced yield and produced hazardous by-products. In this study, we isolated fucoidan at a high yield using enzyme-assisted extraction; the Celluclast enzyme assisted extract of Undaria pinnatifida sporophylls (FCUS). To examine the antioxidant properties of FCUS, oxidative stress was induced with 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) in Vero cells and zebrafish model. FCUS was composed of 30.4% sulfate and 52.3% fucose. Pre-treatment of Vero cells with FCUS dose dependently inhibited AAPH-induced reactive oxygen species (ROS) production. Moreover, FCUS remarkably reduced cell death, ROS generation, and lipid peroxidation production in zebrafish larvae. Overall, these findings indicate that the sulfate-rich fucoidan of FCUS, obtained with an eco-friendly process, could be implemented as a beneficial antioxidant agent in the functional food industry.


Assuntos
Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/química , Undaria/química , Amidinas/toxicidade , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Chlorocebus aethiops , Peroxidação de Lipídeos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio/química , Células Vero , Peixe-Zebra
12.
J Food Sci Technol ; 57(6): 2283-2292, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32431354

RESUMO

In this study, the saponin-rich fractions of five individual (two Red and three Black) sea cucumbers (Apostichopus japonicus) in South Korea were investigated for their antiproliferative effect against HL-60, B16F10, MCF-7, and Hep3B tumor cell lines. The red sea cucumber saponin-rich fraction (SSC) from Jeju Island (JRe) decreased the growth of HL-60 with an IC50 value of 23.55 ± 3.40 µg/mL, which represented the strongest anticancer activity among the extracts. Further, SSC downregulated B-cell lymphoma extra-large (Bcl-xL), while upregulating, to different degrees, Bcl-2-associated X protein (Bax), caspase-9, caspase-3, PARP cleavage, and apoptotic bodies in cancer cells. Evidence for SSC inducing apoptosis via the mitochondria-mediated pathway was found. The contents of SSCs were determined using ultra high-performance liquid chromatography coupled with a quadrupole orbitrap mass spectrometry to comparatively evaluate the regional influence. In West Sea, the total SSC content of A. japonicus was 15.5 mg/g, representing the highest content, while A. japonicus in the South Sea yielded the lowest content at 8 mg/g. The major saponin constituent in SSC was identified as Holotoxin A1, which may the anti-tumor compound in A. japonicus.

13.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455280

RESUMO

While the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied in Escherichia coli and Salmonella, less is known about the switch complex in Bacillus subtilis or other Gram-positive species. Two component proteins (FliG and FliM) are shared between E. coli and B. subtilis, but in place of the protein FliN found in E. coli, the B. subtilis complex contains the larger protein FliY. Notably, in B. subtilis the signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action in E. coli Here, we have examined the architecture and function of the switch complex in B. subtilis using targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, the B. subtilis switch complex appears to be organized similarly to that in E. coli The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that of E. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences from E. coli involve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCE Flagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex in Bacillus subtilis or other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas in E. coli or Salmonella CheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of the B. subtilis switch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control in B. subtilis and other Gram-positive species.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Proteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Multimerização Proteica , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Movimento , Ligação Proteica
14.
Mol Microbiol ; 107(1): 94-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076571

RESUMO

During assembly of the bacterial flagellum, protein subunits that form the exterior structures are exported through a specialized secretion apparatus energized by the proton gradient. This category of protein transport, together with the similar process that occurs in the injectisomes of gram-negative pathogens, is termed type-III secretion. The membrane-embedded part of the flagellar export apparatus contains five essential proteins: FlhA, FlhB, FliP, FliQ and FliR. Here, we have undertaken a variety of experiments that together support the proposal that the protein-conducting conduit is formed primarily, and possibly entirely, by FliP. Chemical modification experiments demonstrate that positions near the center of certain FliP trans-membrane (TM) segments are accessible to polar reagents. FliP expression sensitizes cells to a number of chemical agents, and mutations at predicted channel-facing positions modulate this effect. Multiple assays are used to show that FliP suffices to form a channel that can conduct a variety of medium-sized, polar molecules. Conductance properties are strongly modulated by mutations in a methionine-rich loop that is predicted to lie at the inner mouth of the channel, which might form a gasket around cargo molecules undergoing export. The results are discussed in the framework of an hypothesis for the architecture and action of the cargo-conducting part of the type-III secretion apparatus.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Transporte Proteico/genética , Salmonella enterica/genética , Salmonella enterica/metabolismo
15.
Adv Exp Med Biol ; 1155: 567-581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468432

RESUMO

Here, we investigated the hepatoprotective effect of a hot water extract from Loliolus beka gray meat (LBMH) containing plentiful taurine in H2O2-induced oxidative stress in hepatocytes. LBMH potently scavenged the 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and exhibited the good reducing power and the oxygen radical absorbance capacity (ORAC) value. Also, LBMH improved the cell viability against H2O2-induced hepatic damage in cultured hepatocytes by reducing intracellular reactive oxygen species (ROS) production. In addition, LBMH inhibited apoptosis via a reduction in sub-G1 cell population, as well as inhibition of apoptotic body formation from H2O2-induced oxidative damage in hepatocytes. Moreover, LBMH regulated the expression levels of Bax, a pro-apoptotic molecule and Bcl-2, an anti-apoptotic molecule in H2O2-treated hepatocytes. Additionally, pre-treatment with LBMH increased the expression of heme oxygenase 1 (HO-1), which is a hepatoprotective enzyme, by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) in H2O2-treated hepatocytes. Taken together, LBMH may be useful as a food ingredient for treatment of liver disease by regulating the Nrf2/HO-1 signal pathway.


Assuntos
Antioxidantes , Extratos Celulares/farmacologia , Decapodiformes/química , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo , Taurina/farmacologia , Animais , Células Cultivadas , Heme Oxigenase-1/metabolismo , Hepatócitos/citologia , Humanos , Peróxido de Hidrogênio , Carne , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Adv Exp Med Biol ; 1155: 583-596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468433

RESUMO

In this study, we evaluated the protective effects of an aqueous extract from Batillus cornutus meat (BM) against cellular oxidative damage caused by hydrogen peroxide (H2O2) in human hepatocyte, Chang cells. First, we prepared an aqueous extract of BM meat (BMW) showing the highest taurine content among free amino acid contents. BMW led to high antioxidant activity showing 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, good reducing power and an oxygen radical absorbance capacity (ORAC) value. Also, BMW improved cell viability that was diminished by H2O2 exposure, as it reduced the generation of intracellular reactive oxygen species (ROS) in Chang cells. In addition, BMW up-regulated the production of antioxidant enzymes, such as catalase and superoxide dismutase (SOD), compared to H2O2-treated Chang cells lacking BMW. Moreover, BMW induced the expressions of nuclear Nrf2 and cytosolic HO-1 in H2O2-treated Chang cells. Interestingly, the treatment of ZnPP, HO-1 inhibitor, abolished the improvement in cell viability and intracellular ROS generation mediated by BMW treatment. In conclusion, this study suggests that BMW protects hepatocytes against H2O2-mediated cellular oxidative damage via up-regulation of the Nrf2/HO-1 signal pathway.


Assuntos
Extratos Celulares/farmacologia , Gastrópodes/química , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Taurina/farmacologia , Animais , Células Cultivadas , Humanos , Peróxido de Hidrogênio , Carne , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
17.
Adv Exp Med Biol ; 1155: 597-610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468434

RESUMO

Octopus ocellatus meat (OM) is well known as a plentiful protein source. In this study, we evaluated the hepatoprotective effect of an aqueous extract of OM (OMA) against H2O2-triggered oxidative stress in human hepatocytes. First of all, taurine rich OMA showed a good ORAC value and reducing power and it was similar with that of ascorbic acid, which is known as a strong antioxidant. Also, OMA significantly improved H2O2-decreased cell viability by reducing the generation of intracellular reactive oxygen species (ROS) in hepatocytes. Interestingly, the stimulation of H2O2-induced the formations of apoptotic bodies and sub-G1 DNA content, whereas they were inhibited by the treatment with OMA. Furthermore, OMA regulated the protein expression levels of apoptotic molecules, such as Bax and Bcl-2. Taken together, this study suggests that OMA, which contains an abundant amount of taurine, protects hepatocytes from H2O2-triggered oxidative stress and might be a functional food material with hepatoprotective effects.


Assuntos
Extratos Celulares/farmacologia , Hepatócitos/efeitos dos fármacos , Octopodiformes/química , Estresse Oxidativo , Animais , Apoptose , Células Cultivadas , Hepatócitos/citologia , Humanos , Peróxido de Hidrogênio/efeitos adversos , Carne , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Adv Exp Med Biol ; 1155: 643-659, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468437

RESUMO

Batillus cornutus (B. cornutus) is one of the gastropoda, which are distributed along the coast of China, Japan and South Korea and northeast area. In this study, we first identified the antioxidant effects of a B. cornutus meat (BM) enzymatic hydrolysate in H2O2-treated Vero cells. First of all, we prepared an Alcalase hydrolysate from BM (BMA) and revealed a high taurine content. Also, taurine rich BMA dose-dependently increased 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, reducing power and the higher oxygen radical absorbance capacity (ORAC) value. In addition, BMA significantly increased the cell viability via the down-regulation of intracellular reactive oxygen species (ROS) production, as well as the decreased formation of apoptotic bodies and sub-G1 DNA population in H2O2-treated Vero cells. Furthermore, BMA increased the expression of the anti-apoptotic molecule, Bcl-2, and decreased the expressions of Bax, p53 and cleaved PARP, all of which are pro-apoptotic molecules, in H2O2-treated Vero cells. Based on these results, this study suggests that BMA may be used as a potential protector on damage caused by oxidative stress.


Assuntos
Antioxidantes/farmacologia , Gastrópodes/química , Estresse Oxidativo , Hidrolisados de Proteína/farmacologia , Animais , Chlorocebus aethiops , Peróxido de Hidrogênio , Carne , Espécies Reativas de Oxigênio/metabolismo , Subtilisinas , Células Vero
19.
Adv Exp Med Biol ; 1155: 661-674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468438

RESUMO

In the present study, we investigated the antioxidant activity of an aqueous extract from Atrina pectinate meat (APW) against H2O2-induced oxidative stress in a human hepatocyte. The extraction yield of APW was 30.01 ± 0.83% and which contained the highest taurine content among free amino acid contents. APW led to the high antioxidant activity showing 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, good reducing power and oxygen radical absorbance capacity (ORAC) value. Also, the results showed that APW improved the cell viability decreased by H2O2 stimulation as well as the reduction of intracellular reactive oxygen species (ROS) generation in hepatocytes. Additionally, APW up-regulated the production of antioxidant mechanisms related enzymes such as catalase and superoxide dismutase (SOD), compared to the only H2O2-treated hepatocytes. Moreover, APW increased the expressions of nuclear Nrf2 and cytosolic HO-1 in H2O2-treated hepatocytes. Interestingly, the treatment of ZnPP, a HO-1 inhibitor abolished the cell viability and intracellular ROS generation induced by APW treatment. In conclusion, this study suggests that APW protects H2O2 induced oxidative stress via up-regulating of Nrf2/HO-1 signal pathway in hepatocytes.


Assuntos
Antioxidantes/farmacologia , Bivalves/química , Extratos Celulares/farmacologia , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo , Animais , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio , Carne , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Adv Exp Med Biol ; 1155: 691-703, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468440

RESUMO

In this study, we investigated the hepatoprotective activity of the water extract derived from Octopus vulgaris meat (OM). First of all, a water extract prepared from OM (OMW) showed the high extraction yield (48.22%) and the highest taurine content (39.84%) in free amino acids. OMW exhibited the high value of reducing power, ABTS and hydrogen peroxide radical scavenging activities in dose-dependent manner. The taurine-rich OMW also led to the reduced intracellular reactive oxygen species (ROS) generation with the increased cell survival in H2O2-treated Chang liver cells. In addition, OMW decreased the apoptotic phenomenon, including the formations of apoptotic bodies and sub-G1 DNA contents by regulating the protein expressions of apoptosis-related molecules such as Bcl-2 and Bax. From these results, this study indicated the taurine-rich OMW protected hepatocytes against oxidative stress. These findings suggest that OWM may be a novel potential antioxidant resource.


Assuntos
Extratos Celulares/farmacologia , Hepatócitos/citologia , Octopodiformes/química , Estresse Oxidativo , Taurina/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular , Humanos , Peróxido de Hidrogênio , Carne , Espécies Reativas de Oxigênio , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa