Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256205

RESUMO

Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.


Assuntos
Ascomicetos , Melhoramento Vegetal , Genes Dominantes , Erysiphe
2.
Biochem Genet ; 61(2): 451-470, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36057909

RESUMO

Glucosinolates (GSLs) and GSL-associated genes are receiving increasing attention from molecular biologists due to their multifunctional properties. GSLs are secondary metabolites considered to be highly active in most Brassica species. Their importance has motivated the discovery and functional analysis of the GSLs and GSL hydrolysis products involved in disease development in brassicas and other plants. Comprehensive knowledge of the GSL content of Brassica species and the molecular details of GSL-related genes will help elucidate the molecular control of this plant defense system. This report provides an overview of the current status of knowledge on GSLs, GSL biosynthesis, as well as hydrolysis related genes, and GSL hydrolysis products that regulate fungal, bacterial, and insect resistance in cabbage and other brassicas.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Glucosinolatos/genética , Glucosinolatos/metabolismo
3.
BMC Genet ; 21(1): 80, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698865

RESUMO

BACKGROUND: Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli, results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB. RESULTS: We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli. Six R-genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession. CONCLUSION: We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.


Assuntos
Comamonadaceae/patogenicidade , Cucurbitaceae/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Cucurbitaceae/microbiologia , Frutas , Doenças das Plantas/microbiologia
4.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756478

RESUMO

Auxins play a pivotal role in clubroot development caused by the obligate biotroph Plasmodiophora brassicae. In this study, we investigated the pattern of expression of 23 genes related to auxin biosynthesis, reception, and transport in Chinese cabbage (Brassica rapa) after inoculation with P. brassicae. The predicted proteins identified, based on the 23 selected auxin-related genes, were from protein kinase, receptor kinase, auxin responsive, auxin efflux carrier, transcriptional regulator, and the auxin-repressed protein family. These proteins differed in amino acids residue, molecular weights, isoelectric points, chromosomal location, and subcellular localization. Leaf and root tissues showed dynamic and organ-specific variation in expression of auxin-related genes. The BrGH3.3 gene, involved in auxin signaling, exhibited 84.4-fold increase in expression in root tissues compared to leaf tissues as an average of all samples. This gene accounted for 4.8-, 2.6-, and 5.1-fold higher expression at 3, 14, and 28 days post inoculation (dpi) in the inoculated root tissues compared to mock-treated roots. BrNIT1, an auxin signaling gene, and BrPIN1, an auxin transporter, were remarkably induced during both cortex infection at 14 dpi and gall formation at 28 dpi. BrDCK1, an auxin receptor, was upregulated during cortex infection at 14 dpi. The BrLAX1 gene, associated with root hair development, was induced at 1 dpi in infected roots, indicating its importance in primary infection. More interestingly, a significantly higher expression of BrARP1, an auxin-repressed gene, at both the primary and secondary phases of infection indicated a dynamic response of the host plant towards its resistance against P. brassicae. The results of this study improve our current understanding of the role of auxin-related genes in clubroot disease development.


Assuntos
Brassica rapa/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Plasmodioforídeos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Membrana Transportadoras/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plasmodioforídeos/parasitologia , Transdução de Sinais/genética
5.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486099

RESUMO

The obligate biotroph Plasmodiophora brassicae causes clubroot disease in oilseeds and vegetables of the Brassicaceae family, and cytokinins play a vital role in clubroot formation. In this study, we examined the expression patterns of 17 cytokinin-related genes involved in the biosynthesis, signaling, and degradation in Chinese cabbage inoculated with the Korean pathotype group 4 isolate of P. brassicae, Seosan. This isolate produced the most severe clubroot symptoms in Chinese cabbage cultivar "Bullam-3-ho" compared to three other Korean geographical isolates investigated. BrIPT1, a cytokinin biosynthesis gene, was induced on Day 1 and Day 28 in infected root tissues and the upregulation of this biosynthetic gene coincided with the higher expression of the response regulators BrRR1, on both Days and BrRR6 on Day 1 and 3. BrRR3 and 4 genes were also induced during gall enlargement on Day 35 in leaf tissues. The BrRR4 gene, which positively interact with phytochrome B, was consistently induced in leaf tissues on Day 1, 3, and 14 in the inoculated plants. The cytokinin degrading gene BrCKX3-6 were induced on Day 14, before gall initiation. BrCKX2,3,6 were induced until Day 28 and their expression was downregulated on Day 35. This insight improves our current understanding of the role of cytokinin signaling genes in clubroot disease development.


Assuntos
Citocininas/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Plasmodioforídeos/genética , Plasmodioforídeos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta , Raízes de Plantas , República da Coreia , Transdução de Sinais
6.
BMC Plant Biol ; 19(1): 13, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621588

RESUMO

BACKGROUND: Plasmodiophora brassicae is a soil-borne plant pathogen that causes clubroot disease, which results in crop yield loss in cultivated Brassica species. Here, we investigated whether a quantitative trait locus (QTL) in B. rapa might confer resistance to a Korean P. brassicae pathotype isolate, Seosan. We crossed resistant and susceptible parental lines and analyzed the segregation pattern in a F2 population of 348 lines. We identified and mapped a novel clubroot resistance QTL using the same mapping population that included susceptible Chinese cabbage and resistant turnip lines. Forty-five resistant and 45 susceptible F2 lines along with their parental lines were used for double digest restriction site-associated DNA sequencing (ddRAD-seq). High resolution melting (HRM)-based validation of SNP positions was conducted to confirm the novel locus. RESULTS: A 3:1 ratio was observed for resistant: susceptible genotypes, which is in accordance with Mendelian segregation. ddRAD-seq identified a new locus, CRs, on chromosome A08 that was different from the clubroot resistance (CR) locus, Crr1. HRM analysis validated SNP positions and constricted CRs region. Four out of seventeen single nucleotide polymorphisms (SNPs) positions were within a 0.8-Mb region that included three NBS-LRR candidate genes but not Crr1. CONCLUSION: The newly identified CRs locus is a novel clubroot resistance locus, as the cultivar Akimeki bears the previously known Crr1 locus but remains susceptible to the Seosan isolate. These results could be exploited to develop molecular markers to detect Seosan-resistant genotypes and develop resistant Chinese cabbage cultivars.


Assuntos
Brassica rapa/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Brassica rapa/parasitologia , Plasmodioforídeos/patogenicidade
7.
BMC Genet ; 20(1): 42, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029104

RESUMO

BACKGROUND: Cabbage (Brassica oleracea var. capitata) is popular worldwide for consumption as a leafy vegetable. Premature flowering is triggered by low temperature, and deteriorates quality of cabbage as vegetable. In general, growers prefer late-flowering varieties to assure good quality compact head. Here, we report BoFLC1.C9 as a gene with clear sequence variation between cabbage lines with different flowering times, and proposed as molecular marker to characterize early- and late-flowering cabbage lines. RESULTS: We identified sequence variation of 67 bp insertions in intron 2, which were contributed in flowering time variation between two inbred lines through rapid down-regulation of the BoFLC1.C9 gene in early-flowering line compared to late-flowering one upon vernalization. One set of primer 'F7R7' proposed as marker, of which was explained with 83 and 80% of flowering time variation in 141 F2 individuals and 20 commercial lines, respectively. CONCLUSIONS: This F7R7 marker could be used as genetic tools to characterize flowering time variation and to select as well to develop early- and late-flowering cabbage cultivars.


Assuntos
Brassica/genética , Flores/genética , Genes de Plantas , Variação Genética , Genótipo , Desenvolvimento Vegetal/genética , Brassica/classificação , Regulação da Expressão Gênica de Plantas , Íntrons , Filogenia , Polimorfismo Genético
8.
Genome ; 62(4): 253-266, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30807237

RESUMO

Broccoli (Brassica oleracea var. italica L.) is a highly nutritious vegetable that typically forms pure green or purple florets. However, green broccoli florets sometimes accumulate slight purplish pigmentation in response environmental factors, decreasing their market value. In the present study, we aimed to develop molecular markers to distinguish broccoli genotypes as pure green or purplish floret color at the early seedling stage. Anthocyanins are known to be involved in the purple pigmentation in plants. The purplish broccoli lines were shown to accumulate purple pigmentation in the hypocotyls of very young seedlings; therefore, the expression profiles of the structural and regulatory genes of anthocyanin biosynthesis were analyzed in the hypocotyls using qRT-PCR. BoPAL, BoDFR, BoMYB114, BoTT8, BoMYC1.1, BoMYC1.2, and BoTTG1 were identified as putative candidate genes responsible for the purple hypocotyl color. BoTT8 was much more highly expressed in the purple than green hypocotyls; therefore, it was cloned and sequenced from various broccoli lines, revealing SNP and InDel variations between these genotypes. We tested four SNPs (G > A; A > T; G > C; T > G) in the first three exons and a 14-bp InDel (ATATTTATATATAT) in the BoTT8 promoter in 51 broccoli genotypes, and we found these genetic variations could distinguish the green lines, purple lines, and F1 hybrids. These novel molecular markers could be useful in broccoli breeding programs to develop a true green or purple broccoli cultivar.


Assuntos
Antocianinas/biossíntese , Brassica/genética , Hipocótilo/anatomia & histologia , Brassica/anatomia & histologia , Clonagem Molecular , DNA de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Hipocótilo/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
9.
Genome ; 62(8): 513-526, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132326

RESUMO

Purple ornamental cabbage (Brassica oleracea var. acephala) is a popular decorative plant, cultivated for its colorful leaf rosettes that persist in cool weather. It is characterized by green outer leaves and purple inner leaves, whose purple pigmentation is due to the accumulation of anthocyanin pigments. Phytohormones play important roles in anthocyanin biosynthesis in other species. Here, we identified 14 and 19 candidate genes putatively involved in abscisic acid (ABA) and ethylene (ET) biosynthesis, respectively, in B. oleracea. We determined the expression patterns of these candidate genes by reverse-transcription quantitative PCR (RT-qPCR). Among candidate ABA biosynthesis-related genes, the expressions of BoNCED2.1, BoNCED2.2, BoNCED6, BoNCED9.1, and BoAAO3.2 were significantly higher in purple compared to green leaves. Likewise, most of the ET biosynthetic genes (BoACS6, BoACS9.1, BoACS11, BoACO1.1, BoACO1.2, BoACO3.1, BoACO4, and BoACO5) had significantly higher expression in purple compared to green leaves. Among these genes, BoNCED2.1, BoNCED2.2, BoACS11, and BoACO4 showed particularly strong associations with total anthocyanin content of the purple inner leaves. Our results suggest that ABA and ET might promote the intense purple pigmentation of the inner leaves of purple ornamental cabbage.


Assuntos
Ácido Abscísico/metabolismo , Antocianinas/biossíntese , Brassica/genética , Etilenos/biossíntese , Pigmentação/genética , Proteínas de Plantas/genética , Antocianinas/genética , Brassica/metabolismo , Proteínas de Plantas/metabolismo
10.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791419

RESUMO

Watermelon (Citrullus lanatus) is a nutritionally rich and economically important horticultural crop of the Cucurbitaceae family. Gummy stem blight (GSB) is a major disease of watermelon, which is caused by the fungus Didymella bryoniae, and results in substantial economic losses in terms of yield and quality. However, only a few molecular studies have focused on GSB resistance in watermelon. Nucleotide binding site (NBS)-encoding resistance (R) genes play important roles in plant defense responses to several pathogens, but little is known about the role of NBS-encoding genes in disease resistance in watermelon. The analyzed NBS-encoding R genes comprises several domains, including Toll/interleukin-1 receptor(TIR), NBS, leucine-rich repeat (LRR), resistance to powdery mildew8(RPW8) and coiled coil (CC), which are known to be involved in disease resistance. We determined the expression patterns of these R genes in resistant and susceptible watermelon lines at different time points after D. bryoniae infection by quantitative RT-PCR. The R genes exhibited various expression patterns in the resistant watermelon compared to the susceptible watermelon. Only six R genes exhibited consistent expression patterns (Cla001821, Cla019863, Cla020705, Cla012430, Cla012433 and Cla012439), which were higher in the resistant line compared to the susceptible line. Our study provides fundamental insights into the NBS-LRR gene family in watermelon in response to D. bryoniae infection. Further functional studies of these six candidate resistance genes should help to advance breeding programs aimed at improving disease resistance in watermelons.


Assuntos
Citrullus/genética , Citrullus/microbiologia , Resistência à Doença/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ascomicetos , Cromossomos de Plantas , Éxons , Perfilação da Expressão Gênica , Genoma de Planta , Íntrons , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos
11.
Int J Mol Sci ; 20(11)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159510

RESUMO

Acidovorax citrulli (A. citrulli) strains cause bacterial fruit blotch (BFB) in cucurbit crops and affect melon significantly. Numerous strains of the bacterium have been isolated from melon hosts globally. Strains that are aggressively virulent towards melon and diagnostic markers for detecting such strains are yet to be identified. Using a cross-inoculation assay, we demonstrated that two Korean strains of A. citrulli, NIHHS15-280 and KACC18782, are highly virulent towards melon but avirulent/mildly virulent to the other cucurbit crops. The whole genomes of three A. citrulli strains isolated from melon and three from watermelon were aligned, allowing the design of three primer sets (AcM13, AcM380, and AcM797) that are specific to melon host strains, from three pathogenesis-related genes. These primers successfully detected the target strain NIHHS15-280 in polymerase chain reaction (PCR) assays from a very low concentration of bacterial gDNA. They were also effective in detecting the target strains from artificially infected leaf, fruit, and seed washing suspensions, without requiring the extraction of bacterial DNA. This is the first report of PCR-based markers that offer reliable, sensitive, and rapid detection of strains of A. citrulli causing BFB in melon. These markers may also be useful in early disease detection in the field samples, in seed health tests, and for international quarantine purposes.


Assuntos
Comamonadaceae/isolamento & purificação , Cucurbitaceae/microbiologia , Doenças das Plantas/microbiologia , Comamonadaceae/genética , Produtos Agrícolas/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , Frutas/microbiologia , Genoma Bacteriano , Reação em Cadeia da Polimerase
12.
Genome ; 61(2): 111-120, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29232522

RESUMO

Ornamental cabbage (Brassica oleracea var. acephala) is a winter-grown and important decorative plant of the family Brassicaceae, which displays an exceptional coloration in the central leaves of the rosette. Anthocyanins are the key determinant of the red, purple, and blue colors of vegetative and reproductive parts of many plant species including ornamental cabbage. Total anthocyanin content was measured spectrophotometrically, and the highest anthocyanin content was detected in the red followed by light-red and white ornamental cabbage lines. Anthocyanin biosynthesis is controlled by members of three different transcription factor (TF) families, such as MYB, basic helix-loop-helix (bHLH), and WD40 repeats (WDR), which function as a MBW complex. We identified three MYB, six bHLH, and one WDR TFs that regulate anthocyanin biosynthesis in ornamental cabbage. The expression of the regulatory and biosynthetic genes for anthocyanin synthesis was determined by qPCR. The tested structural genes of the anthocyanin pathway were shown to be up-regulated in the red followed by light-red ornamental cabbage lines; however, the expression levels of the late biosynthetic genes were barely detected in the white ornamental cabbage lines. Among the regulatory genes, BoPAP2 (MYB), BoTT8, BoEGL3.1, and BoMYC1.2 (bHLH), and BoTTG1 (WDR) were identified as candidates for the regulation of anthocyanin biosynthesis. This work could be useful for the breeding of novel colorful ornamental cabbage cultivars.


Assuntos
Antocianinas/biossíntese , Brassica/genética , Regulação da Expressão Gênica de Plantas , Antocianinas/metabolismo , Vias Biossintéticas/genética , Brassica/classificação , Brassica/metabolismo , Filogenia , Fatores de Transcrição/genética , Transcriptoma
13.
Mol Biol Rep ; 45(5): 773-785, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29931534

RESUMO

Heading cabbage is a nutritionally rich and economically important cruciferous vegetable. Black rot disease, caused by the bacterium Xanthomonas campestris pv. campestris, reduces both the yield and quality of the cabbage head. Nucleotide binding site (NBS)-encoding resistance (R) genes play a vital role in the plant immune response to various pathogens. In this study, we analyzed the expression and DNA sequence variation of 31 NBS-encoding genes in cabbage (Brassica oleracea var. capitata). These genes encoded TIR, NBS, LRR and RPW8 protein domains, all of which are known to be involved in disease resistance. RNA-seq revealed that these 31 genes were differentially expressed in leaf, root, silique, and stem tissues. Furthermore, qPCR analyses revealed that several of these genes were more highly expressed in resistant compared to susceptible cabbage lines, including Bol003711, Bol010135, Bol010559, Bol022784, Bol029866, Bol042121, Bol031422, Bol040045 and Bol042095. Further analysis of these genes promises to yield both practical benefits, such as molecular markers for marker-assisted breeding, and fundamental insights to the mechanisms of resistance to black rot in cabbage.


Assuntos
Brassica/genética , Resistência à Doença , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Brassica/microbiologia , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Caules de Planta/genética , Caules de Planta/microbiologia , Análise de Sequência de RNA , Xanthomonas campestris
14.
Int J Mol Sci ; 19(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235823

RESUMO

Ringspot, caused by the fungus Mycosphaerella brassicicola, is a serious disease of Brassica crops worldwide. Despite noteworthy progress to reveal the role of glucosinolates in pathogen defense, the host⁻pathogen interaction between cabbage (Brassica oleracea) and M. brassicicola has not been fully explored. Here, we investigated the glucosinolate profiles and expression of glucosinolate biosynthesis genes in the ringspot-resistant (R) and susceptible (S) lines of cabbage after infection with M. brassicicola. The concomitant rise of aliphatic glucoiberverin (GIV) and indolic glucobrassicin (GBS) and methoxyglucobrassicin (MGBS) was linked with ringspot resistance in cabbage. Pearson's correlation and principle component analysis showed a significant positive association between GIV contents and the expression of the glucosinolate biosynthesis gene ST5b-Bol026202 and between GBS contents and the expression of the glucosinolate biosynthesis gene MYB34-Bol017062. Our results confirmed that M. brassicicola infection induces the expression of glucosinolate biosynthesis genes in cabbage, which alters the content of individual glucosinolates. This link between the expression of glucosinolate biosynthesis genes and the accumulation of their respective glucosinolates with the resistance to ringspot extends our molecular sense of glucosinolate-negotiated defense against M. brassicicola in cabbage.


Assuntos
Brassica/genética , Resistência à Doença/genética , Genes de Plantas , Glucosinolatos/biossíntese , Ascomicetos/patogenicidade , Brassica/metabolismo , Brassica/microbiologia , Glucosinolatos/genética
15.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551645

RESUMO

Sclerotinia stem rot (white mold), caused by the fungus Sclerotinia sclerotiorum, is a serious disease of Brassica crops worldwide. Despite considerable progress in investigating plant defense mechanisms against this pathogen, which have revealed the involvement of glucosinolates, the host⁻pathogen interaction between cabbage (Brassica oleracea) and S. sclerotiorum has not been fully explored. Here, we investigated glucosinolate profiles and the expression of glucosinolate biosynthesis genes in white-mold-resistant (R) and -susceptible (S) lines of cabbage after infection with S. sclerotiorum. The simultaneous rise in the levels of the aliphatic glucosinate glucoiberverin (GIV) and the indolic glucosinate glucobrassicin (GBS) was linked to white mold resistance in cabbage. Principal component analysis showed close association between fungal treatment and cabbage GIV and GBS contents. The correlation analysis showed significant positive associations between GIV content and expression of the glucosinolate biosynthesis genes ST5b-Bol026202 and ST5c-Bol030757, and between GBS content and the expression of the glucosinolate biosynthesis genes ST5a-Bol026200 and ST5a-Bol039395. Our results revealed that S. sclerotiorum infection of cabbage induces the expression of glucosinolate biosynthesis genes, altering the content of individual glucosinolates. This relationship between the expression of glucosinolate biosynthesis genes and accumulation of the corresponding glucosinolates and resistance to white mold extends the molecular understanding of glucosinolate-negotiated defense against S. sclerotiorum in cabbage.


Assuntos
Vias Biossintéticas , Brassica/microbiologia , Resistência à Doença , Glucosinolatos/análise , Ascomicetos/patogenicidade , Brassica/química , Brassica/genética , Regulação da Expressão Gênica de Plantas , Glucosinolatos/biossíntese , Doenças das Plantas/microbiologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Análise de Componente Principal , Metabolismo Secundário
16.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495391

RESUMO

Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P) pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5, FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11, FaMYB9, FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7, FaF3H, FaCHI1, FaCHI3, and FaCHS, and among the late BGs, FaDFR4-3, FaLDOX, and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.


Assuntos
Antocianinas/biossíntese , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentos Biológicos/genética , Flavonoides/metabolismo , Fragaria/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Estudos de Associação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
17.
Int J Mol Sci ; 19(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534037

RESUMO

In this study, an 1888-bp carbonic anhydrase XII (CA XII) sequence was cloned from the brain of the pufferfish, Takifugu rubripes. The cloned sequence contained a coding region of 1470-bp, which was predicted to translate into a protein of 490 amino acid residues. The predicted protein showed between 68-56% identity with the large yellow croaker (Larimichthys crocea), tilapia (Oreochromis niloticus), and Asian arowana (Scleropages formosus) CA XII proteins. It also exhibited 36% and 53% identity with human CA II and CA XII, respectively. The cloned sequence contained a 22 amino acid NH2-terminal signal sequence and three Asn-Xaa-Ser/Thr sequons, among which one was potentially glycosylated. Four cysteine residues were also identified (Cys-21, Cys-201, Cys-355, and Cys-358), two of which (Cys-21 and Cys-201) could potentially form a disulfide bond. A 22-amino acid COOH-terminal cytoplasmic tail containing a potential site for phosphorylation by protein kinase A was also found. The cloned sequence might be a transmembrane protein, as predicted from in silico and phylogenetic analyses. The active site analysis of the predicted protein showed that its active site residues were highly conserved with tilapia CA XII protein. Homology modeling of the pufferfish CA XII was done using the crystal structure of the extracellular domain of human carbonic anhydrase XII at 1.55 Å resolution as a template. Semi-quantitative reverse transcription (RT)-PCR, quantitative PCR (q-PCR), and in situ hybridization confirmed that pufferfish CA XII is highly expressed in the brain.


Assuntos
Anidrases Carbônicas/genética , Proteínas de Peixes/genética , Takifugu/genética , Motivos de Aminoácidos , Animais , Encéfalo/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Clonagem Molecular , Sequência Conservada , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Domínios Proteicos , Takifugu/metabolismo
18.
Int J Mol Sci ; 19(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257511

RESUMO

Gummy stem blight (GSB) causes enormous losses to melon (Cucumis melo L.) production worldwide. We aimed to develop useful molecular markers linked to GSB resistance. In this study, 168 F2 plants were obtained from the F1 population of a cross between the GSB-susceptible 'Cornell ZPPM 339' and the GSB-resistant 'PI482399' lines. A 3:1 ratio of susceptible and resistant genotypes was observed in the F2 population, indicating control by a single recessive gene. Nucleotide-binding site leucine-rich repeat (NBS-LRR) genes confer resistance against insects and diseases in cucurbits including melon. We cloned and sequenced the TIR-NBS-LRR-type resistance gene MELO3C022157, located on melon chromosome 9, from resistant and susceptible lines. Sequence analysis revealed deletions in the first intron, a 2-bp frameshift deletion from the second exon and a 7-bp insertion in the 4th exon of the resistant line. We developed two insertion/deletion (InDel) markers, GSB9-kh-1 and GSB9-kh-2, which were found in the first intron of MELO3C022157 linked to GSB resistance. We validated these markers with the F2 population and inbred lines. These InDels may be used to facilitate marker-assisted selection of GSB resistance in melon. However, functional analysis of overexpressing and/or knock-down mutants is needed to confirm the frameshift mutation.


Assuntos
Cucurbitaceae/genética , Doenças das Plantas/genética , Cromossomos de Plantas/genética , Resistência à Doença , Genes de Plantas , Genótipo , Mutação INDEL , Padrões de Herança , Fenótipo
19.
BMC Genomics ; 18(1): 885, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145809

RESUMO

BACKGROUND: Protein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them. RESULTS: We have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1-1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5-2 gene for ABA stress, and BrPDI1-4, 6-1 and 9-2 were putative candidate genes for both cold and chilling injury stresses. CONCLUSIONS: Our findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses.


Assuntos
Brassica rapa/genética , Genoma de Planta , Família Multigênica , Isomerases de Dissulfetos de Proteínas/genética , Motivos de Aminoácidos , Brassica rapa/enzimologia , Brassica rapa/metabolismo , Cromossomos de Plantas , Temperatura Baixa , Éxons , Perfilação da Expressão Gênica , Íntrons , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Isomerases de Dissulfetos de Proteínas/classificação , Domínios Proteicos , Estresse Fisiológico/genética , Sintenia
20.
BMC Plant Biol ; 17(1): 23, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122509

RESUMO

BACKGROUND: Plants contain a range of aquaporin (AQP) proteins, which act as transporter of water and nutrient molecules through living membranes. AQPs also participate in water uptake through the roots and contribute to water homeostasis in leaves. RESULTS: In this study, we identified 59 AQP genes in the B. rapa database and Br135K microarray dataset. Phylogenetic analysis revealed four distinct subfamilies of AQP genes: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs). Microarray analysis showed that the majority of PIP subfamily genes had differential transcript abundance between two B. rapa inbred lines Chiifu and Kenshin that differ in their susceptibility to cold. In addition, all BrPIP genes showed organ-specific expression. Out of 22 genes, 12, 7 and 17 were up-regulated in response to cold, drought and salt stresses, respectively. In addition, 18 BrPIP genes were up-regulated under ABA treatment and 4 BrPIP genes were up-regulated upon F. oxysporum f. sp. conglutinans infection. Moreover, all BrPIP genes showed down-regulation under waterlogging stress, reflecting likely the inactivation of AQPs controlling symplastic water movement. CONCLUSIONS: This study provides a comprehensive analysis of AQPs in B. rapa and details the expression of 22 members of the BrPIP subfamily. These results provide insight into stress-related biological functions of each PIP gene of the AQP family, which will promote B. rapa breeding programs.


Assuntos
Aquaporinas/genética , Brassica rapa/genética , Genes de Plantas , Proteínas de Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Éxons , Perfilação da Expressão Gênica , Íntrons , Oxigênio/metabolismo , Filogenia , Análise Serial de Proteínas , Análise de Sequência de DNA , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa