Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Curr Top Microbiol Immunol ; 436: 393-407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243854

RESUMO

Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Células-Tronco Mesenquimais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Microambiente Tumoral
2.
Blood ; 136(2): 210-223, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32219444

RESUMO

Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Integrina alfa6 , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Pirimidinas/farmacologia , Animais , Anticorpos Antineoplásicos/farmacologia , Anticorpos Neutralizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
3.
Proc Natl Acad Sci U S A ; 116(8): 3052-3061, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30733284

RESUMO

Glucocorticoids (GCs) are used in combination chemotherapies as front-line treatment for B cell acute lymphoblastic leukemia (B-ALL). Although effective, many patients relapse and become resistant to chemotherapy and GCs in particular. Why these patients relapse is not clear. We took a comprehensive, functional genomics approach to identify sources of GC resistance. A genome-wide shRNA screen identified the transcriptional coactivators EHMT2, EHMT1, and CBX3 as important contributors to GC-induced cell death. This complex selectively supports GC-induced expression of genes contributing to cell death. A metaanalysis of gene expression data from B-ALL patient specimens revealed that Aurora kinase B (AURKB), which restrains GC signaling by phosphorylating EHMT1-2, is overexpressed in relapsed B-ALL, suggesting it as a potential contributor to relapse. Inhibition of AURKB enhanced GC-induced expression of cell death genes, resulting in potentiation of GC cytotoxicity in cell lines and relapsed B-ALL patient samples. This function for AURKB is distinct from its canonical role in the cell cycle. These results show the utility of functional genomics in understanding mechanisms of resistance and rapidly identifying combination chemotherapeutics.


Assuntos
Aurora Quinase B/genética , Morte Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Regulação Leucêmica da Expressão Gênica/genética , Glucocorticoides/genética , Glucocorticoides/farmacologia , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , RNA Interferente Pequeno/genética , Recidiva
4.
Adv Exp Med Biol ; 1270: 107-121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33123996

RESUMO

Dysregulated Wnt signaling plays a central role in initiation, progression, and metastasis in many types of human cancers. Cancer development and resistance to conventional cancer therapies are highly associated with the tumor microenvironment (TME), which is composed of numerous stable non-cancer cells, including immune cells, extracellular matrix (ECM), fibroblasts, endothelial cells (ECs), and stromal cells. Recently, increasing evidence suggests that the relationship between Wnt signaling and the TME promotes the proliferation and maintenance of tumor cells, including leukemia. Here, we review the Wnt pathway, the role of Wnt signaling in different components of the TME, and therapeutic strategies for targeting Wnt signaling.


Assuntos
Neoplasias/metabolismo , Microambiente Tumoral , Via de Sinalização Wnt , Células Endoteliais , Matriz Extracelular , Fibroblastos , Humanos , Neoplasias/tratamento farmacológico
5.
J Ultrasound Med ; 39(3): 589-595, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31633840

RESUMO

OBJECTIVES: This article reports a study of cell mechanics in patient-derived (primary) B-cell acute lymphocytic leukemia (ALL) cells treated with antibodies against integrins. Leukemia cell adhesion to stromal cells mediates chemotherapeutic drug resistance, also known as cell adhesion-mediated chemotherapeutic drug resistance. We have previously shown that antibodies against integrin α4 and α6 adhesion molecules can de-adhere ALL cells from stromal cells or counter-receptors. Because drug-resistant cells are more deformable, as evaluated by single-beam acoustic tweezers, we hypothesized that changes in cell mechanics might contribute to the de-adhesive effect of integrin-targeting antibodies. METHODS: In this study, the deformability of primary pre-B ALL cells was evaluated by single-beam acoustic tweezers after treatments with the de-adhering antibody Tysabri or P5G10 against integrin α4 and α6 adhesion molecules. RESULTS: We demonstrated that primary ALL cells treated with P5G10 expressed decreased deformability compared with immunoglobulin G1 -treated control cells (P < .05). Tysabri did not show an effect on deformability (P > .05). CONCLUSIONS: These results suggest that decreased deformability is associated with an integrin α6 blockade. Further assessments of the functional roles of deformability and integrin blockades in B-ALL cell drug resistance and deformability, respectively, are necessary.


Assuntos
Adesão Celular/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Integrinas/efeitos dos fármacos , Natalizumab/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico por imagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Acústica , Células Cultivadas , Humanos , Imunoglobulina G/administração & dosagem , Ultrassonografia/métodos
6.
Proc Natl Acad Sci U S A ; 114(28): 7379-7384, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652351

RESUMO

Whiteness, although frequently apparent on the wings, legs, antennae, or bodies of many species of moths and butterflies, along with other colors and shades, has often escaped our attention. Here, we investigate the nanostructure and microstructure of white spots on the wings of Carystoides escalantei, a dusk-active and shade-inhabiting Costa Rican rain forest butterfly (Hesperiidae). On both males and females, two types of whiteness occur: angle dependent (dull or bright) and angle independent, which differ in the microstructure, orientation, and associated properties of their scales. Some spots on the male wings are absent from the female wings. Whether the angle-dependent whiteness is bright or dull depends on the observation directions. The angle-dependent scales also show enhanced retro-reflection. We speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to butterfly's low light habitat and to airflow experienced on the wing base vs. wing tip.


Assuntos
Borboletas/fisiologia , Asas de Animais/fisiologia , Animais , Cor , Comunicação , Feminino , Masculino , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Movimento , Nanopartículas , Fatores Sexuais , Comportamento Sexual Animal , Especificidade da Espécie
7.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872365

RESUMO

Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.


Assuntos
Leucemia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Nicho de Células-Tronco , Microambiente Tumoral
8.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033444

RESUMO

Minimal residual disease (MRD) refers to a chemotherapy/radiotherapy-surviving leukemia cell population that gives rise to relapse of the disease. The detection of MRD is critical for predicting the outcome and for selecting the intensity of further treatment strategies. The development of various new diagnostic platforms, including next-generation sequencing (NGS), has introduced significant advances in the sensitivity of MRD diagnostics. Here, we review current methods to diagnose MRD through phenotypic marker patterns or differential gene patterns through analysis by flow cytometry (FCM), polymerase chain reaction (PCR), real-time quantitative polymerase chain reaction (RQ-PCR), reverse transcription polymerase chain reaction (RT-PCR) or NGS. Future advances in clinical procedures will be molded by practical feasibility and patient needs regarding greater diagnostic sensitivity.


Assuntos
Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Células Neoplásicas Circulantes/patologia , Reação em Cadeia da Polimerase , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
9.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669372

RESUMO

Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stroma cells triggers intracellular signals regulating cell-adhesion-mediated drug resistance (CAM-DR). Stromal cell protection of ALL cells has been shown to require active AKT. In chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT pathway is reported. A novel FDA-approved PI3Kδ inhibitor, CAL-101/idelalisib, leads to downregulation of p-AKT and increased apoptosis of CLL cells. Recently, two additional PI3K inhibitors have received FDA approval. As the PI3K/AKT pathway is also implicated in adhesion-mediated survival of ALL cells, PI3K inhibitors have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K in normal hematopoietic cells, and in ALL. We focus on summarizing targeting strategies of PI3K in ALL.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Isoenzimas , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resultado do Tratamento
10.
Langmuir ; 31(40): 11135-42, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26397708

RESUMO

Focal conic domains (FCDs) form in smectic-A liquid crystal films with hybrid anchoring conditions with eccentricity and size distribution that depend strongly on interface curvature. Assemblies of FCDs can be exploited in settings ranging from optics to material assembly. Here, using micropost arrays with different shapes and arrangement, we assemble arrays of smectic flower patterns, revealing their internal structure as well as defect size, location, and distribution as a function of interface curvature, by imposing positive, negative, or zero Gaussian curvature at the free surface. We characterize these structures, relating free surface topography, substrate anchoring strength, and FCD distribution. Whereas the largest FCDs are located in the thickest regions of the films, the distribution of sizes is not trivially related to height, due to Apollonian tiling. Finally, we mold FCDs around microposts of complex shape and find that FCD arrangements are perturbed near the posts, but are qualitatively similar far from the posts where the details of the confining walls and associated curvature fields decay. This ability to mold FCD defects into a variety of hierarchical assemblies by manipulating the interface curvature paves the way to create new optical devices, such as compound eyes, via a directed assembly scheme.

11.
Phys Chem Chem Phys ; 15(26): 10835-40, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23698158

RESUMO

Electron transport and recombination in three-dimensionally-ordered (3D-ordered) structure electrodes were investigated using intensity-modulated photocurrent and photovoltage spectroscopy. The surface-modified TiO2 inverse opal structure was applied as a 3D electrode. The morphology, crystalline structure and surface states of the 3D-ordered structure were characterized by SEM, TEM and XPS and compared to those of the conventional nanoparticulate TiO2 structure. The performance of the 3D electrode was also evaluated by comparing the transport time and recombination lifetime to those of the conventional electrodes. Remarkably, the recombination lifetime in inverse opal was found to be greater than in nanocrystalline TiO2 by 4.3-6.2 times, thus improving the electron collection efficiency by 10%. Comparing the photovoltaic performance, although the dye adsorption of the 3D-ordered porous electrode is lower, the electrode achieves a photocurrent density comparable to that of a nanoparticulate TiO2 electrode due to the higher light scattering as well as the higher collection efficiency.

12.
Integr Biol (Camb) ; 152023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37247849

RESUMO

The recurrence of cancer following chemotherapy treatment is a major cause of death across solid and hematologic cancers. In B-cell acute lymphoblastic leukemia (B-ALL), relapse after initial chemotherapy treatment leads to poor patient outcomes. Here we test the hypothesis that chemotherapy-treated versus control B-ALL cells can be characterized based on cellular physical phenotypes. To quantify physical phenotypes of chemotherapy-treated leukemia cells, we use cells derived from B-ALL patients that are treated for 7 days with a standard multidrug chemotherapy regimen of vincristine, dexamethasone, and L-asparaginase (VDL). We conduct physical phenotyping of VDL-treated versus control cells by tracking the sequential deformations of single cells as they flow through a series of micron-scale constrictions in a microfluidic device; we call this method Quantitative Cyclical Deformability Cytometry. Using automated image analysis, we extract time-dependent features of deforming cells including cell size and transit time (TT) with single-cell resolution. Our findings show that VDL-treated B-ALL cells have faster TTs and transit velocity than control cells, indicating that VDL-treated cells are more deformable. We then test how effectively physical phenotypes can predict the presence of VDL-treated cells in mixed populations of VDL-treated and control cells using machine learning approaches. We find that TT measurements across a series of sequential constrictions can enhance the classification accuracy of VDL-treated cells in mixed populations using a variety of classifiers. Our findings suggest the predictive power of cell physical phenotyping as a complementary prognostic tool to detect the presence of cells that survive chemotherapy treatment. Ultimately such complementary physical phenotyping approaches could guide treatment strategies and therapeutic interventions. Insight box Cancer cells that survive chemotherapy treatment are major contributors to patient relapse, but the ability to predict recurrence remains a challenge. Here we investigate the physical properties of leukemia cells that survive treatment with chemotherapy drugs by deforming individual cells through a series of micron-scale constrictions in a microfluidic channel. Our findings reveal that leukemia cells that survive chemotherapy treatment are more deformable than control cells. We further show that machine learning algorithms applied to physical phenotyping data can predict the presence of cells that survive chemotherapy treatment in a mixed population. Such an integrated approach using physical phenotyping and machine learning could be valuable to guide patient treatments.


Assuntos
Asparaginase , Leucemia , Humanos , Vincristina/uso terapêutico , Recidiva , Fenótipo , Leucemia/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
13.
Exp Ther Med ; 23(1): 47, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34934426

RESUMO

Treatment of resistant or recurrent acute lymphoblastic leukemia (ALL) remains a challenge. It was previously demonstrated that the adhesion molecule integrin α4, referred to hereafter as α4, mediates the cell adhesion-mediated drug resistance (CAM-DR) of B-cell ALL by binding to vascular cell adhesion molecule-1 (VCAM-1) on bone marrow stroma. In addition, it was previously observed that the blockade of α4 with natalizumab or inhibition using the small molecule antagonist TBC3486 sensitized relapsed ALL cells to chemotherapy. However, α4-targeted therapy is not clinically available for the treatment of leukemia to date. In the present study, the use of a novel non-peptidic small molecule integrin α4 antagonist, AVA4746, as a potential new approach to combat drug-resistant B-ALL was explored. An in vitro co-culture = model of primary B-ALL cells and an in vivo xenograft model of patient-derived B-ALL cells were utilized for evaluation of AVA4746. VLA-4 conformation activation, cell adhesion/de-adhesion, endothelial tube formation, in vivo leukemia cell mobilization and survival assays were performed. AVA4746 exhibited high affinity for binding to B-ALL cells, where it also efficiently blocked ligand-binding to VCAM-1. In addition, AVA4746 caused the functional de-adhesion of primary B-ALL cells from VCAM-1. Inhibition of α4 using AVA4746 also prevented angiogenesis in vitro and when applied in combination with chemotherapy consisting of Vincristine, Dexamethasone and L-asparaginase, it prolonged the survival of ~33% of the mice in an in vivo xenograft model of B-ALL. These data implicate the potential of targeting the α4-VCAM-1 interaction using AVA4746 for the treatment of drug-resistant B-lineage ALL.

14.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298603

RESUMO

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.

15.
Front Oncol ; 11: 766888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926269

RESUMO

The PI3K/Akt pathway-and in particular PI3Kδ-is known for its role in drug resistant B-cell acute lymphoblastic leukemia (B-ALL) and it is often upregulated in refractory or relapsed B-ALL. Myc proteins are transcription factors responsible for transcribing pro-proliferative genes and c-Myc is often overexpressed in cancers. The chromatin regulator BRD4 is required for expression of c-Myc in hematologic malignancies including B-ALL. Previously, combination of BRD4 and PI3K inhibition with SF2523 was shown to successfully decrease Myc expression. However, the underlying mechanism and effect of dual inhibition of PI3Kδ/BRD4 in B-ALL remains unknown. To study this, we utilized SF2535, a novel small molecule dual inhibitor which can specifically target the PI3Kδ isoform and BRD4. We treated primary B-ALL cells with various concentrations of SF2535 and studied its effect on specific pharmacological on-target mechanisms such as apoptosis, cell cycle, cell proliferation, and adhesion molecules expression usingin vitro and in vivo models. SF2535 significantly downregulates both c-Myc mRNA and protein expression through inhibition of BRD4 at the c-Myc promoter site and decreases p-AKT expression through inhibition of the PI3Kδ/AKT pathway. SF2535 induced apoptosis in B-ALL by downregulation of BCL-2 and increased cleavage of caspase-3, caspase-7, and PARP. Moreover, SF2535 induced cell cycle arrest and decreased cell counts in B-ALL. Interestingly, SF2535 decreased the mean fluorescence intensity (MFI) of integrin α4, α5, α6, and ß1 while increasing MFI of CXCR4, indicating that SF2535 may work through inside-out signaling of integrins. Taken together, our data provide a rationale for the clinical evaluation of targeting PI3Kδ/BRD4 in refractory or relapsed B-ALL using SF2535.

16.
Leukemia ; 35(1): 75-89, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205861

RESUMO

Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(-) disease. We report that CD19(-) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(-) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(-) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Leucemia de Células B/imunologia , Leucemia de Células B/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD19/química , Antígenos de Neoplasias , Biomarcadores , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunoterapia Adotiva/métodos , Leucemia de Células B/genética , Leucemia de Células B/terapia , Camundongos Transgênicos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Relação Estrutura-Atividade , Transdução Genética , Transgenes , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Front Oncol ; 10: 592733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425742

RESUMO

The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.

18.
Cells ; 9(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560076

RESUMO

Drug resistance is an obstacle in the therapy of acute lymphoblastic leukemia (ALL). Whether the physical properties such as the motility of the cells contribute to the survival of ALL cells after drug treatment has recently been of increasing interest, as they could potentially allow the metastasis of solid tumor cells and the migration of leukemia cells. We hypothesized that chemotherapeutic treatment may alter these physical cellular properties. To investigate the motility of chemotherapeutics-treated B-cell ALL (B-ALL) cells, patient-derived B-ALL cells were treated with chemotherapy for 7 days and left for 12 h without chemotherapeutic treatment. Two parameters of motility were studied, velocity and migration distance, using a time-lapse imaging system. The study revealed that compared to non-chemotherapeutically treated B-ALL cells, B-ALL cells that survived chemotherapy treatment after 7 days showed reduced motility. We had previously shown that Tysabri and P5G10, antibodies against the adhesion molecules integrins α4 and α6, respectively, may overcome drug resistance mediated through leukemia cell adhesion to bone marrow stromal cells. Therefore, we tested the effect of integrin α4 or α6 blockade on the motility of chemotherapeutics-treated ALL cells. Only integrin α4 blockade decreased the motility and velocity of two chemotherapeutics-treated ALL cell lines. Interestingly, integrin α6 blockade did not affect the velocity of chemoresistant ALL cells. This study explores the physical properties of the movements of chemoresistant B-ALL cells and highlights a potential link to integrins. Further studies to investigate the underlying mechanism are warranted.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico por imagem , Imagem com Lapso de Tempo , Células da Medula Óssea/citologia , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Humanos , Integrina alfa4/farmacologia , Células Estromais/citologia , Imagem com Lapso de Tempo/métodos
19.
Adv Mater ; 30(43): e1803847, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30175418

RESUMO

Composite films consisting of wrinkles on top of the elastomeric poly(dimethylsiloxane) film and a thin layer of silica particles embedded at the bottom is prepared as on-demand mechanoresponsive smart windows. By carefully varying the wrinkle geometry, silica particle size, and stretching strain, different initial optical states and a large degree of optical transmittance change in the visible to near infrared range with a relatively small strain (as small as 10%) is achieved. The 10% pre-strain sample has shallow wrinkles with a low amplitude and shows moderate transmittance (60.5%) initially and the highest transmittance of 86.4% at 550 nm when stretched at the pre-strain level. Stretching beyond the pre-strain level leads to a drastic decrease of the transmittance at 550 nm, 39.7% and 70.8% with an additional 10% and 30% strain, respectively. The large drop of optical transmittance is the result of combined effects from the formation of secondary wrinkles and nanovoids generated around the particles. The 20% pre-strain sample has wrinkles with a moderate amplitude, showing 36.9% transmittance in the initial state, and the highest transmittance of 71.5% at 550 nm when stretched to the pre-strain level. Further stretching leads to increased opacity similar to that seen from the 10% pre-strain sample.

20.
Sci Adv ; 4(10): eaat8597, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333992

RESUMO

The ordering of nanoparticles into predetermined configurations is of importance to the design of advanced technologies. Here, we balance the interfacial energy of nanoparticles against the elastic energy of cholesteric liquid crystals to dynamically shape nanoparticle assemblies at a fluid interface. By adjusting the concentration of surfactant that plays the dual role of tuning the degree of nanoparticle hydrophobicity and altering the molecular anchoring of liquid crystals, we pattern nanoparticles at the interface of cholesteric liquid crystal emulsions. In this system, interfacial assembly is tempered by elastic patterns that arise from the geometric frustration of confined cholesterics. Patterns are tunable by varying both surfactant and chiral dopant concentrations. Adjusting the particle hydrophobicity more finely by regulating the surfactant concentration and solution pH further modifies the rigidity of assemblies, giving rise to surprising assembly dynamics dictated by the underlying elasticity of the cholesteric. Because particle assembly occurs at the interface with the desired structures exposed to the surrounding water solution, we demonstrate that particles can be readily cross-linked and manipulated, forming structures that retain their shape under external perturbations. This study serves as a foundation for better understanding inter-nanoparticle interactions at interfaces by tempering their assembly with elasticity and for creating materials with chemical heterogeneity and linear, periodic structures, essential for optical and energy applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa