Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298550

RESUMO

Rapid, accurate, and convenient diagnosis is essential for effective disease management. Various detection methods, such as enzyme-linked immunosorbent assay, have been extensively used, with lateral flow immunoassay (LFIA) recently emerging as a major diagnostic tool. Nanoparticles (NPs) with characteristic optical properties are used as probes for LFIA, and researchers have presented various types of optical NPs with modified optical properties. Herein, we review the literature on LFIA with optical NPs for the detection of specific targets in the context of diagnostics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática , Ouro , Limite de Detecção
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982869

RESUMO

The nanoscale spatiotemporal resolution of single-particle tracking (SPT) renders it a powerful method for exploring single-molecule dynamics in living cells or tissues, despite the disadvantages of using traditional organic fluorescence probes, such as the weak fluorescent signal against the strong cellular autofluorescence background coupled with a fast-photobleaching rate. Quantum dots (QDs), which enable tracking targets in multiple colors, have been proposed as an alternative to traditional organic fluorescence dyes; however, they are not ideally suitable for applying SPT due to their hydrophobicity, cytotoxicity, and blinking problems. This study reports an improved SPT method using silica-coated QD-embedded silica nanoparticles (QD2), which represent brighter fluorescence and are less toxic than single QDs. After treatment of QD2 in 10 µg/mL, the label was retained for 96 h with 83.76% of labeling efficiency, without impaired cell function such as angiogenesis. The improved stability of QD2 facilitates the visualization of in situ endothelial vessel formation without real-time staining. Cells retain QD2 fluorescence signal for 15 days at 4 °C without significant photobleaching, indicating that QD2 has overcome the limitations of SPT enabling long-term intracellular tracking. These results proved that QD2 could be used for SPT as a substitute for traditional organic fluorophores or single quantum dots, with its photostability, biocompatibility, and superior brightness.


Assuntos
Nanopartículas , Pontos Quânticos , Humanos , Dióxido de Silício , Células Endoteliais da Veia Umbilical Humana , Linhagem Celular , Corantes Fluorescentes
3.
J Nanobiotechnology ; 20(1): 22, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991619

RESUMO

BACKGROUND: Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application. RESULTS: In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs). The structure of the alloy QDs was confirmed using time-of-flight medium-energy ion scattering spectroscopy. The alloy QDs exhibited strong fluorescence and a high QY of 98.0%. After hydrophilic surface modification, the alloy QDs exhibited a QY of 84.7%, which is 1.5 times higher than that of MQDs. The QY was 77.8% after the alloy QDs were conjugated with folic acid (FA). Alloy QDs and MQDs, after conjugation with FA, were successfully used for targeting human KB cells. The alloy QDs exhibited a stronger fluorescence signal than MQD; these signals were retained in the popliteal lymph node area for 24 h. CONCLUSION: The alloy QDs maintained a higher QY in hydrophilization for biological applications than MQDs. And also, alloy QDs showed the potential as nanoprobes for highly sensitive bioimaging analysis.


Assuntos
Ligas , Compostos de Cádmio/química , Sistemas de Liberação de Medicamentos/métodos , Pontos Quânticos , Sulfetos/química , Compostos de Zinco/química , Ligas/química , Ligas/farmacocinética , Animais , Linhagem Celular Tumoral , Ácido Fólico , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Imagem Óptica , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Compostos de Selênio/química , Propriedades de Superfície
4.
J Nanobiotechnology ; 20(1): 130, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279134

RESUMO

BACKGROUND: To take advantages, such as multiplex capacity, non-photobleaching property, and high sensitivity, of surface-enhanced Raman scattering (SERS)-based in vivo imaging, development of highly enhanced SERS nanoprobes in near-infrared (NIR) region is needed. A well-controlled morphology and biocompatibility are essential features of NIR SERS nanoprobes. Gold (Au)-assembled nanostructures with controllable nanogaps with highly enhanced SERS signals within multiple hotspots could be a breakthrough. RESULTS: Au-assembled silica (SiO2) nanoparticles (NPs) (SiO2@Au@Au NPs) as NIR SERS nanoprobes are synthesized using the seed-mediated growth method. SiO2@Au@Au NPs using six different sizes of Au NPs (SiO2@Au@Au50-SiO2@Au@Au500) were prepared by controlling the concentration of Au precursor in the growth step. The nanogaps between Au NPs on the SiO2 surface could be controlled from 4.16 to 0.98 nm by adjusting the concentration of Au precursor (hence increasing Au NP sizes), which resulted in the formation of effective SERS hotspots. SiO2@Au@Au500 NPs with a 0.98-nm gap showed a high SERS enhancement factor of approximately 3.8 × 106 under 785-nm photoexcitation. SiO2@Au@Au500 nanoprobes showed detectable in vivo SERS signals at a concentration of 16 µg/mL in animal tissue specimen at a depth of 7 mm. SiO2@Au@Au500 NPs with 14 different Raman label compounds exhibited distinct SERS signals upon subcutaneous injection into nude mice. CONCLUSIONS: SiO2@Au@Au NPs showed high potential for in vivo applications as multiplex nanoprobes with high SERS sensitivity in the NIR region.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Ouro/química , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Dióxido de Silício/química , Análise Espectral Raman/métodos
5.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742866

RESUMO

Bimetallic nanoparticles are important materials for synthesizing multifunctional nanozymes. A technique for preparing gold-platinum nanoparticles (NPs) on a silica core template (SiO2@Au@Pt) using seed-mediated growth is reported in this study. The SiO2@Au@Pt exhibits peroxidase-like nanozyme activity has several advantages over gold assembled silica core templates (SiO2@Au@Au), such as stability and catalytic performance. The maximum reaction velocity (Vmax) and the Michaelis-Menten constants (Km) were and 2.1 × 10-10 M-1∙s-1 and 417 µM, respectively. Factors affecting the peroxidase activity, including the quantity of NPs, solution pH, reaction time, and concentration of tetramethyl benzidine, are also investigated in this study. The optimization of SiO2@Au@Pt NPs for H2O2 detection obtained in 0.5 mM TMB; using 5 µg SiO2@Au@Pt, at pH 4.0 for 15 min incubation. H2O2 can be detected in the dynamic liner range of 1.0 to 100 mM with the detection limit of 1.0 mM. This study presents a novel method for controlling the properties of bimetallic NPs assembled on a silica template and increases the understanding of the activity and potential applications of highly efficient multifunctional NP-based nanozymes.


Assuntos
Ouro , Nanopartículas Metálicas , Corantes , Ouro/química , Peróxido de Hidrogênio/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Peroxidase , Peroxidases , Platina/química , Dióxido de Silício/química
6.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142888

RESUMO

Quantum dots (QDs) have outstanding optical properties such as strong fluorescence, excellent photostability, broad absorption spectra, and narrow emission bands, which make them useful for bioimaging. However, cadmium (Cd)-based QDs, which have been widely studied, have potential toxicity problems. Cd-free QDs have also been studied, but their weak photoluminescence (PL) intensity makes their practical use in bioimaging challenging. In this study, Cd-free QD nanoprobes for bioimaging were fabricated by densely embedding multiple indium phosphide/zinc sulfide (InP/ZnS) QDs onto silica templates and coating them with a silica shell. The fabricated silica-coated InP/ZnS QD-embedded silica nanoparticles (SiO2@InP QDs@SiO2 NPs) exhibited hydrophilic properties because of the surface silica shell. The quantum yield (QY), maximum emission peak wavelength, and full-width half-maximum (FWHM) of the final fabricated SiO2@InP QDs@SiO2 NPs were 6.61%, 527.01 nm, and 44.62 nm, respectively. Moreover, the brightness of the particles could be easily controlled by adjusting the amount of InP/ZnS QDs in the SiO2@InP QDs@SiO2 NPs. When SiO2@InP QDs@SiO2 NPs were administered to tumor syngeneic mice, the fluorescence signal was prominently detected in the tumor because of the preferential distribution of the SiO2@InP QDs@SiO2 NPs, demonstrating their applicability in bioimaging with NPs. Thus, SiO2@InP QDs@SiO2 NPs have the potential to successfully replace Cd-based QDs as highly bright and biocompatible fluorescent nanoprobes.


Assuntos
Nanopartículas , Neoplasias , Pontos Quânticos , Animais , Cádmio , Índio , Camundongos , Fosfinas , Dióxido de Silício , Sulfetos , Compostos de Zinco
7.
J Nanobiotechnology ; 19(1): 73, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712008

RESUMO

BACKGROUND: Blood prostate-specific antigen (PSA) levels are widely used as diagnostic biomarkers for prostate cancer. Lateral-flow immunoassay (LFIA)-based PSA detection can overcome the limitations associated with other methods. LFIAbased PSA detection in clinical samples enables prognosis and early diagnosis owing to the use of high-performance signal reporters. RESULTS: Here, a semiquantitative LFIA platform for PSA detection in blood was developed using Au-Ag nanoparticles (NPs) assembled on silica NPs (SiO2@Au-Ag NPs) that served as signal reporters. Synthesized SiO2@Au-Ag NPs exhibited a high absorbance at a wide wavelength range (400-800 nm), with a high scattering on nitrocellulose membrane test strips. In LFIA, the color intensity of the test line on the test strip differed depending on the PSA concentration (0.30-10.00 ng/mL), and bands for the test line on the test strip could be used as a standard. When clinical samples were assessed using this LFIA, a visual test line with particular color intensity observed on the test strip enabled the early diagnosis and prognosis of patients with prostate cancer based on PSA detection. In addition, the relative standard deviation of reproducibility was 1.41%, indicating high reproducibility, and the signal reporter showed good stability for 10 days. CONCLUSION: These characteristics of the signal reporter demonstrated the reliability of the LFIA platform for PSA detection, suggesting potential applications in clinical sample analysis.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/isolamento & purificação , Neoplasias da Próstata/diagnóstico , Dióxido de Silício/química , Prata/química , Técnicas Biossensoriais/métodos , Colorimetria , Humanos , Imunoensaio/métodos , Limite de Detecção , Masculino , Reprodutibilidade dos Testes
8.
Adv Exp Med Biol ; 1309: 23-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782867

RESUMO

It is almost impossible to fabricate size-controlled nanomaterials without full understanding about nanoscience, because nanomaterials sometimes suddenly grow up and precipitated, meanwhile other nanomaterials are disappeared during fabrication process. With this reason, it is necessary to understand the principle theories about nanoscience for fabrication of "well-defined" nanoparticles. This chapter explains basic theories about nanomaterials. And based on the theory, methods for controlling the size of nanoparticles and preventing the aggregation after fabrication are described.


Assuntos
Nanopartículas , Nanoestruturas
9.
Adv Exp Med Biol ; 1309: 41-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782868

RESUMO

Silica consists of one silicon atom and two oxygen atoms (SiO2) and is commonly used in various aspects of daily life. For example, it has been used as glass, insulator, and so on. Nowadays, silica is used as core reagents for fabricating and encapsulating nanoparticles (NPs). In this chapter, the usage of silica in nanotechnology is described. Synthesis and surface modification of silica nanoparticles (SiNPs), including via the Stöber method, reverse microemulsion method, and modified sol-gel method, are illustrated. Then, various NPs with silica encapsulation are explained. At last, the biological applications of those mentioned NPs are described.


Assuntos
Nanopartículas , Dióxido de Silício , Nanotecnologia
10.
Adv Exp Med Biol ; 1309: 67-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782869

RESUMO

From molecular probes, also known as fluorophores (typically emitting a longer wavelength than the absorbing wavelength), to inorganic nanoparticles, various light-emitting materials have been actively studied and developed for various applications in life science owing to their superior imaging and sensing ability. Especially after the breakthrough development of quantum dots (QDs), studies have pursued the development of the optical properties and biological applications of luminescent inorganic nanoparticles such as upconversion nanoparticles (UCNPs), metal nanoclusters, carbon dots, and so on. In this review, we first provide a brief explanation about the theoretical background and traditional concepts of molecular fluorophores. Then, currently developed luminescent nanoparticles are described as sensing and imaging platforms from general aspects to technical views.


Assuntos
Nanopartículas , Nanoestruturas , Pontos Quânticos , Corantes Fluorescentes , Sondas Moleculares
11.
Adv Exp Med Biol ; 1309: 97-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782870

RESUMO

In this review, we focus on sensing techniques and biological applications of various luminescent nanoparticles including quantum dot (QD), up-conversion nanoparticles (UCNPs) following the previous chapter. Fluorescent phenomena can be regulated or shifted by interaction between biological targets and luminescence probes depending on their distance, which is so-called FÓ§rster resonance energy transfer (FRET). QD-based FRET technique, which has been widely applied as a bioanalytical tool, is described. We discuss time-resolved fluorescence (TRF) imaging and flow cytometry technique, using photoluminescent nanoparticles with unique properties for effectively improving selectivity and sensitivity. Based on these techniques, bioanalytical and biomedical application, bioimaging with QD, UCNPs, and Euripium-activated luminescent nanoprobes are covered. Combination of optical property of these luminescent nanoparticles with special functions such as drug delivery, photothermal therapy (PTT), and photodynamic therapy (PDT) is also described.


Assuntos
Nanopartículas , Fotoquimioterapia , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , Luminescência
12.
Adv Exp Med Biol ; 1309: 133-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782871

RESUMO

This review presents the main characteristics of metal nanoparticles (NPs), especially consisting of noble metal such as Au and Ag, and brief information on their synthesis methods. The physical and chemical properties of the metal NPs are described, with a particular focus on the optically variable properties (surface plasmon resonance based properties) and surface-enhanced Raman scattering of plasmonic materials. In addition, this chapter covers ways to achieve advances by utilizing their properties in the biological studies and medical fields (such as imaging, diagnostics, and therapeutics). These descriptions will help researchers new to nanomaterials for biomedical diagnosis to understand easily the related knowledge and also will help researchers involved in the biomedical field to learn about the latest research trends.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
13.
Adv Exp Med Biol ; 1309: 277-287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782877

RESUMO

Not only is fabrication important for research in materials science, but also materials characterization and analysis. Special microscopes capable of ultra-high magnification are more essential for observing and analyzing nanoparticles than for macro-size particles. Recently, electron microscopy (EM) and scanning probe microscopy (SPM) are commonly used for observing and analyzing nanoparticles. In this chapter, the basic principles of various techniques in optical and electron microscopy are described and classified. In particular, techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are explained.


Assuntos
Nanopartículas , Nanoestruturas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Varredura por Sonda
14.
Adv Exp Med Biol ; 1309: 161-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782872

RESUMO

Following the previous chapter, recent synthetic methods of metal-based nanoparticles and their applications based on plasmonic resonance properties are described in this chapter. This differs from the previous chapter, which described the general uses of metal-based nanoparticles, in that various recent advanced applications of metal-based nanoparticles are described in this chapter.


Assuntos
Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície
15.
Adv Exp Med Biol ; 1309: 257-276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782876

RESUMO

The use of carbon-based nanomaterials (CNs) with outstanding properties has been rising in many scientific and industrial application fields. These CNs represent a tunable alternative for applications with biomolecules, which allow interactions in either covalent or noncovalent way. Diverse carbon-derived nanomaterial family exhibits unique features and has been widely exploited in various biomedical applications, including biosensing, diagnosis, cancer therapy, drug delivery, and tissue engineering. In this chapter, we aim to present an overview of CNs with a particular interest in intrinsic structural, electronic, and chemical properties. In particular, the detailed properties and features of CNs and its derivatives, including carbon nanotube (CNT), graphene, graphene oxide (GO), and reduced GO (rGO) are summarized. The interesting biomedical applications are also reviewed in order to offer an overview of the possible fields for scientific and industrial applications of CNs.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
16.
Adv Exp Med Biol ; 1309: 1-22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782866

RESUMO

Nano is a fine metric unit which means "one billionth." Nanotechnology is attracting attention as a technological basis to lead the fourth industry. By utilizing synergistic properties obtained from controlling the structure or arrangement of materials at the nanoscale, nanotechnology has evolved rapidly over the past half century and is active in a variety of fields such as materials, pharmaceuticals, and biology. This chapter briefly describes the concept and features of nanotechnology, as well as the preparation, analysis, characterization, and application of nanomaterials. Also, the prospects for nanotechnology along with the nanotoxicity are described.


Assuntos
Nanoestruturas , Nanotecnologia
17.
Adv Exp Med Biol ; 1309: 191-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782873

RESUMO

Magnetic nanoparticles have been used in various fields such as data storage, biomedicine, or bioimaging with their unique magnetic property. With their low toxicity, the importance of magnetic nanoparticles keeps increasing especially in biological field. In this chapter, content suitable for scientific inquirers or undergraduates to acquire basic knowledge about nanotechnology is introduced and then recent research trends in nanotechnology are covered.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Sistemas de Liberação de Medicamentos , Magnetismo , Nanopartículas/toxicidade , Nanotecnologia , Fenômenos Físicos
18.
Adv Exp Med Biol ; 1309: 235-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782875

RESUMO

Nanobiotechnology is known as the application of nanoscaled techniques in biology which bridges natural science to living organism for improving the quality of life of humans. Nanotechnology was first issued in 1959 and has been rapidly developed, supplying numerous benefits to basic scientific academy and to clinical application including human healthcare, specifically in cancer therapy. This chapter discusses recent advances and potentials of nanotechnology in pharmaceutics, therapeutics, biosensing, bioimaging, and gene delivery that demonstrate the multifunctionality of nanotechnology.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Humanos , Nanomedicina , Nanotecnologia , Qualidade de Vida
19.
Adv Exp Med Biol ; 1309: 289-292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782878

RESUMO

Nanotechnology is a rapidly growing area of development by numerous research groups across the world with its potential applications gaining recognition since the 1950s across various fields. During the last decade of the twentieth century, researchers have actively engaged in the synthesis of nanoparticles and investigation of their physicochemical properties. Advancing the research momentum forward at the beginning of the twenty-first century, rapid development of nanoscience allowed to demonstrate unprecedented advantages of the nanomaterials and its applications in a wide range of fields. The interdisciplinary nature of nanoscience and its expansion has led to establishment of new laboratories and research centers, with increasing needs on training and educating young scientists in advanced laboratory protocols. In addition, pedagogical demands in nanotechnology and nanomaterials have resulted an emergence of new dedicated curriculums at universities which has sped up the development of nanoscience and its contribution to the body of knowledge in natural science.


Assuntos
Nanopartículas , Nanoestruturas , Humanos , Nanotecnologia , Pesquisadores , Universidades
20.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203603

RESUMO

Prostate-specific antigen (PSA) is the best-known biomarker for early diagnosis of prostate cancer. For prostate cancer in particular, the threshold level of PSA <4.0 ng/mL in clinical samples is an important indicator. Quick and easy visual detection of the PSA level greatly helps in early detection and treatment of prostate cancer and reducing mortality. In this study, we developed optimized silica-coated silver-assembled silica nanoparticles (SiO2@Ag@SiO2 NPs) that were applied to a visual lateral flow immunoassay (LFIA) platform for PSA detection. During synthesis, the ratio of silica NPs to silver nitrate changed, and as the synthesized NPs exhibited distinct UV spectra and colors, most optimized SiO2@Ag@SiO2 NPs showed the potential for early prostate cancer diagnosis. The PSA detection limit of our LFIA platform was 1.1 ng/mL. By applying each SiO2@Ag@SiO2 NP to the visual LFIA platform, optimized SiO2@Ag@SiO2 NPs were selected in the test strip, and clinical samples from prostate cancer patients were successfully detected as the boundaries of non-specific binding were clearly seen and the level of PSA was <4 ng/mL, thus providing an avenue for quick prostate cancer diagnosis and early treatment.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias da Próstata , Humanos , Imunoensaio , Masculino , Antígeno Prostático Específico , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa