Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664585

RESUMO

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Assuntos
Ferro , Microambiente Tumoral , Animais , Ferro/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Lipocalina-2/imunologia , Feminino , Simbiose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Ativação de Macrófagos/imunologia , Camundongos Knockout
2.
Nature ; 594(7863): 442-447, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079126

RESUMO

Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.


Assuntos
Neoplasias Colorretais/patologia , Intestino Delgado/patologia , Células-Tronco Neoplásicas/patologia , Oncogenes , Nicho de Células-Tronco , Animais , Células Clonais/patologia , Neoplasias Colorretais/genética , Feminino , Intestino Delgado/metabolismo , Masculino , Camundongos , Mutação , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única , Nicho de Células-Tronco/genética , Microambiente Tumoral , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
3.
J Immunol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101764

RESUMO

Intestinal microbiota and selected strains of commensal bacteria influence regulatory T (Treg) cell functionality in the colon. Nevertheless, whether and how microbiota changes the transcriptome profile and TCR specificities of colonic Tregs remain to be precisely defined. In this study, we have employed single-cell RNA sequencing and comparatively analyzed colonic Tregs from specific pathogen-free and germ-free (GF) mice. We found that microbiota shifts the activation trajectory of colonic Tregs toward a distinct phenotypic subset enriched in specific pathogen-free but not in GF mice. Moreover, microbiota induced the expansion of specific Treg clonotypes with shared transcriptional specificities. The microbiota-induced subset of colonic Tregs, identified as PD-1- CXCR3+ Tregs, displayed enhanced suppressive capabilities compared with colonic Tregs derived from GF mice, enhanced production of IL-10, and were the primary regulators of enteric inflammation in dextran sodium sulfate-induced colitis. These findings identify a hitherto unknown gut microbiota and immune cell interaction module that could contribute to the development of a therapeutic modality for intestinal inflammatory diseases.

4.
Hepatology ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042837

RESUMO

BACKGROUND AND AIMS: Liver fibrosis represents a global health burden, given the paucity of approved antifibrotic therapies. Liver sinusoidal endothelial cells (LSECs) play a major gatekeeping role in hepatic homeostasis and liver disease pathophysiology. In early tumorigenesis, runt-related transcription factor 3 (RUNX3) functions as a sentinel; however, its function in liver fibrosis in LSECs remains unclear. This study aimed to investigate the role of RUNX3 as an important regulator of the gatekeeping functions of LSECs and explore novel angiocrine regulators of liver fibrosis. APPROACH AND RESULTS: Mice with endothelial Runx3 deficiency develop gradual and spontaneous liver fibrosis secondary to LSEC dysfunction, thereby more prone to liver injury. Mechanistic studies in human immortalized LSECs and mouse primary LSECs revealed that IL-6/JAK/STAT3 pathway activation was associated with LSEC dysfunction in the absence of RUNX3. Single-cell RNA sequencing and quantitative RT-PCR revealed that leucine-rich alpha-2-glycoprotein 1 ( LRG1 ) was highly expressed in RUNX3-deficient and dysfunctional LSECs. In in vitro and coculture experiments, RUNX3-depleted LSECs secreted LRG1, which activated HSCs throughTGFBR1-SMAD2/3 signaling in a paracrine manner. Furthermore, circulating LRG1 levels were elevated in mouse models of liver fibrosis and in patients with fatty liver and cirrhosis. CONCLUSIONS: RUNX3 deficiency in the endothelium induces LSEC dysfunction, LRG1 secretion, and liver fibrosis progression. Therefore, endothelial RUNX3 is a crucial gatekeeping factor in LSECs, and profibrotic angiocrine LRG1 may be a novel target for combating liver fibrosis.

5.
Br J Cancer ; 130(12): 1979-1989, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643339

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear. METHODS: We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated. RESULTS: IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients. CONCLUSIONS: IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Subunidade beta de Receptor de Interleucina-10 , Células Mieloides , Recidiva Local de Neoplasia , Neoplasias Pancreáticas , Receptores de Interleucina , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/sangue , Humanos , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Receptores de Interleucina/genética , Células Mieloides/metabolismo , Células Mieloides/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Subunidade beta de Receptor de Interleucina-10/genética , Feminino , Masculino , Microambiente Tumoral/genética , Linhagem Celular Tumoral
6.
Cancer Immunol Immunother ; 72(8): 2757-2768, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165046

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a devastating cancer due to its poor survival rate, early detection, and resectability. This study aimed to determine the peripheral blood mononuclear cell (PBMC) immune biomarkers in patients with PDAC and investigate the PDAC-specific peripheral blood biomarker panel and validate its clinical performance. METHODS: In this prospective, blinded, case-control study, a biomarker panel formula was generated using a development cohort-including healthy controls, patients at high risk of PDAC, and patients with benign pancreatic disease, PDAC, or other gastrointestinal malignancies-and its diagnostic performance was verified using a validation cohort, including patients with ≥ 1 lesion suspected as PDAC on computed tomography (CT). RESULTS: RNA-sequencing of PBMCs from patients with PDAC identified three novel immune cell markers, IL-7R, PLD4, and ID3, as specific markers for PDAC. Regarding the diagnostic performance of the regression formula for the three biomarker panels, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 84.0%, 78.8%, 47.2%, 95.6%, and 79.8%, respectively. Based on the formula scores for the biomarker panel, the false-negative rate (FNR) of the biomarkers was 8% (95% confidence interval [CI] 3.0-13.0), which was significantly lower than that based on CT in the validation cohort (29.2%, 95% CI 20.8-37.6). CONCLUSIONS: The regression formula constructed using three PBMC biomarkers is an inexpensive, rapid, and convenient method that shows clinically useful performance for the diagnosis of PDAC. It aids diagnoses and differential diagnoses of PDAC from pancreatic disease by lowering the FNR compared to CT. Clinical trial registration Clinical Research Information Service, KCT0004614 (08 January 2020).


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Leucócitos Mononucleares , Estudos de Casos e Controles , Estudos Prospectivos , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , RNA Mensageiro , RNA , Neoplasias Pancreáticas
7.
Mol Cell ; 58(4): 610-20, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000846

RESUMO

The differences between individual cells can have profound functional consequences, in both unicellular and multicellular organisms. Recently developed single-cell mRNA-sequencing methods enable unbiased, high-throughput, and high-resolution transcriptomic analysis of individual cells. This provides an additional dimension to transcriptomic information relative to traditional methods that profile bulk populations of cells. Already, single-cell RNA-sequencing methods have revealed new biology in terms of the composition of tissues, the dynamics of transcription, and the regulatory relationships between genes. Rapid technological developments at the level of cell capture, phenotyping, molecular biology, and bioinformatics promise an exciting future with numerous biological and medical applications.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Processamento Alternativo , Animais , Linhagem da Célula/genética , Variação Genética , Humanos , Modelos Genéticos
8.
Bioinformatics ; 36(5): 1492-1500, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591642

RESUMO

MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce 'soft windowing', a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype-phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Saúde da População , Software , Animais , Estudos de Associação Genética , Humanos , Camundongos , Fenótipo
9.
Conserv Genet ; 19(4): 995-1005, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100824

RESUMO

The International Mouse Phenotyping Consortium (IMPC) is building a catalogue of mammalian gene function by producing and phenotyping a knockout mouse line for every protein-coding gene. To date, the IMPC has generated and characterised 5186 mutant lines. One-third of the lines have been found to be non-viable and over 300 new mouse models of human disease have been identified thus far. While current bioinformatics efforts are focused on translating results to better understand human disease processes, IMPC data also aids understanding genetic function and processes in other species. Here we show, using gorilla genomic data, how genes essential to development in mice can be used to help assess the potentially deleterious impact of gene variants in other species. This type of analyses could be used to select optimal breeders in endangered species to maintain or increase fitness and avoid variants associated to impaired-health phenotypes or loss-of-function mutations in genes of critical importance. We also show, using selected examples from various mammal species, how IMPC data can aid in the identification of candidate genes for studying a condition of interest, deliver information about the mechanisms involved, or support predictions for the function of genes that may play a role in adaptation. With genotyping costs decreasing and the continued improvements of bioinformatics tools, the analyses we demonstrate can be routinely applied.

10.
Nat Methods ; 10(11): 1093-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056876

RESUMO

Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única
11.
Nucleic Acids Res ; 40(5): e38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22187154

RESUMO

Accurate prediction of transcription factor binding sites (TFBSs) is a prerequisite for identifying cis-regulatory modules that underlie transcriptional regulatory circuits encoded in the genome. Here, we present a computational framework for detecting TFBSs, when multiple position weight matrices (PWMs) for a transcription factor are available. Grouping multiple PWMs of a transcription factor (TF) based on their sequence similarity improves the specificity of TFBS prediction, which was evaluated using multiple genome-wide ChIP-Seq data sets from 26 TFs. The Z-scores of the area under a receiver operating characteristic curve (AUC) values of 368 TFs were calculated and used to statistically identify co-occurring regulatory motifs in the TF bound ChIP loci. Motifs that are co-occurring along with the empirical bindings of E2F, JUN or MYC have been evaluated, in the basal or stimulated condition. Results prove our method can be useful to systematically identify the co-occurring motifs of the TF for the given conditions.


Assuntos
Matrizes de Pontuação de Posição Específica , Elementos Reguladores de Transcrição , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Fatores de Transcrição E2F/metabolismo , Motivos de Nucleotídeos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Software
12.
Nat Commun ; 15(1): 1624, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388459

RESUMO

LAR-RPTPs are evolutionarily conserved presynaptic cell-adhesion molecules that orchestrate multifarious synaptic adhesion pathways. Extensive alternative splicing of LAR-RPTP mRNAs may produce innumerable LAR-RPTP isoforms that act as regulatory "codes" for determining the identity and strength of specific synapse signaling. However, no direct evidence for this hypothesis exists. Here, using targeted RNA sequencing, we detected LAR-RPTP mRNAs in diverse cell types across adult male mouse brain areas. We found pronounced cell-type-specific patterns of two microexons, meA and meB, in Ptprd mRNAs. Moreover, diverse neural circuits targeting the same neuronal populations were dictated by the expression of different Ptprd variants with distinct inclusion patterns of microexons. Furthermore, conditional ablation of Ptprd meA+ variants at presynaptic loci of distinct hippocampal circuits impaired distinct modes of synaptic transmission and objection-location memory. Activity-triggered alterations of the presynaptic Ptprd meA code in subicular neurons mediates NMDA receptor-mediated postsynaptic responses in CA1 neurons and objection-location memory. Our data provide the evidence of cell-type- and/or circuit-specific expression patterns in vivo and physiological functions of LAR-RPTP microexons that are dynamically regulated.


Assuntos
Sinapses , Transmissão Sináptica , Camundongos , Animais , Masculino , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Transdução de Sinais , Neurônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , RNA Mensageiro/metabolismo
13.
Nat Commun ; 15(1): 230, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172108

RESUMO

Several functions of autophagy associated with proliferation, differentiation, and migration of endothelial cells have been reported. Due to lack of models recapitulating angiogenic sprouting, functional heterogeneity of autophagy in endothelial cells along angiogenic sprouts remains elusive. Here, we apply an angiogenesis-on-a-chip to reconstruct 3D sprouts with clear endpoints. We perform single-cell RNA sequencing of sprouting endothelial cells from our chip to reveal high activation of autophagy in two endothelial cell populations- proliferating endothelial cells in sprout basements and stalk-like endothelial cells near sprout endpoints- and further the reciprocal expression pattern of autophagy-related genes between stalk- and tip-like endothelial cells near sprout endpoints, implying an association of autophagy with tip-stalk cell specification. Our results suggest a model describing spatially differential roles of autophagy: quality control of proliferating endothelial cells in sprout basements for sprout elongation and tip-stalk cell specification near sprout endpoints, which may change strategies for developing autophagy-based anti-angiogenic therapeutics.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Neovascularização Fisiológica/genética , Angiogênese , Dispositivos Lab-On-A-Chip , Análise de Sequência de RNA
14.
Nat Commun ; 15(1): 2779, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555350

RESUMO

Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.


Assuntos
Resistência à Insulina , Obesidade , Masculino , Camundongos , Animais , Obesidade/complicações , Obesidade/genética , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lisossomos/metabolismo , Lipídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
15.
Exp Mol Med ; 56(2): 422-440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374207

RESUMO

Accumulating evidence hints heterochromatin anchoring to the inner nuclear membrane as an upstream regulatory process of gene expression. Given that the formation of neural progenitor cell lineages and the subsequent maintenance of postmitotic neuronal cell identity critically rely on transcriptional regulation, it seems possible that the development of neuronal cells is influenced by cell type-specific and/or context-dependent programmed regulation of heterochromatin anchoring. Here, we explored this possibility by genetically disrupting the evolutionarily conserved barrier-to-autointegration factor (Baf) in the Drosophila nervous system. Through single-cell RNA sequencing, we demonstrated that Baf knockdown induces prominent transcriptomic changes, particularly in type I neuroblasts. Among the differentially expressed genes, our genetic analyses identified teashirt (tsh), a transcription factor that interacts with beta-catenin, to be closely associated with Baf knockdown-induced phenotypes that were suppressed by the overexpression of tsh or beta-catenin. We also found that Baf and tsh colocalized in a region adjacent to heterochromatin in type I NBs. Notably, the subnuclear localization pattern remained unchanged when one of these two proteins was knocked down, indicating that both proteins contribute to the anchoring of heterochromatin to the inner nuclear membrane. Overall, this study reveals that the Baf-mediated transcriptional regulation of teashirt is a novel molecular mechanism that regulates the development of neural progenitor cell lineages.


Assuntos
Células-Tronco Neurais , beta Catenina , Animais , Drosophila , Regulação da Expressão Gênica , Heterocromatina/genética , Tireotropina
16.
Nat Commun ; 15(1): 4963, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862535

RESUMO

Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.


Assuntos
Proteínas Luminescentes , Camundongos Knockout , Proteína Vermelha Fluorescente , Fatores de Transcrição SOXB1 , Animais , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Camundongos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mosaicismo , Diferenciação Celular , Proliferação de Células/genética , Esôfago/metabolismo , Esôfago/patologia , Linhagem da Célula/genética , Íntrons/genética , Feminino , Masculino
17.
Cell Rep Med ; 5(1): 101362, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232693

RESUMO

Repeated pandemics caused by the influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV) have resulted in serious problems in global public health, emphasizing the need for broad-spectrum antiviral therapeutics against respiratory virus infections. Here, we show the protective effects of long-acting recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc) against major respiratory viruses, including influenza virus, SARS-CoV-2, and respiratory syncytial virus. Administration of rhIL-7-hyFc in a therapeutic or prophylactic regimen induces substantial antiviral effects. During an influenza A virus (IAV) infection, rhIL-7-hyFc treatment increases pulmonary T cells composed of blood-derived interferon γ (IFNγ)+ conventional T cells and locally expanded IL-17A+ innate-like T cells. Single-cell RNA transcriptomics reveals that rhIL-7-hyFc upregulates antiviral genes in pulmonary T cells and induces clonal expansion of type 17 innate-like T cells. rhIL-7-hyFc-mediated disease prevention is dependent on IL-17A in both IAV- and SARS-CoV-2-infected mice. Collectively, we suggest that rhIL-7-hyFc can be used as a broadly active therapeutic for future respiratory virus pandemic.


Assuntos
Influenza Humana , Interleucina-17 , Animais , Camundongos , Humanos , Interleucina-17/genética , Interleucina-7 , Linfócitos T , SARS-CoV-2 , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
18.
EBioMedicine ; 99: 104932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118400

RESUMO

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Assuntos
COVID-19 , Melfalan , gama-Globulinas , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Furões , Brônquios , Fator de Crescimento Transformador beta , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
19.
Oncogene ; 42(7): 501-515, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526851

RESUMO

ST2 functions as a receptor for the cytokine IL-33. It has been implicated in carcinogenesis. In this study, we sought to mechanistically determine how ST2 and IL-33 function to support cancer stem cell (CSC) activity and drive gastric cancer (GC) pathogenesis. ST2+ subpopulation spontaneously arose during gastric tumorigenesis. A thorough evaluation of ST2 and IL-33 expression in gastric tumors revealed that they show an overlapping expression pattern, notably in poor differentiated GC and metastasis foci. Moreover, their expression levels are clinically correlated to cancer progression. Using a genetic model of CSC-driven gastric carcinogenesis, ST2+ subpopulation displays increased tumorigenicity, chemoresistance and metastatic potentials through increased survival fitness endowed by an elevated MAPK-regulated Bcl-xL. The IL-33/ST2 axis enhances the self-renewal and survival of GC stem cells and organoids. Importantly, we observed a synergistic cooperation between IL-33/ST2 and the canonical Wnt pathway in transactivating Wnt-dependent transcription and supporting CSC activity, a partnership that was abrogated by inhibiting Bcl-xL. Concordant with this, ST2+ subpopulation was targeted by MEK1/2 and Bcl-xL-specific inhibitors. These findings establish ST2 as a functional CSC marker that fortifies the Wnt signal while availing a novel therapeutic strategy to suppress GC progression by targeting the IL-33/ST2/Bcl-xL signaling axis.


Assuntos
Neoplasias Gástricas , Via de Sinalização Wnt , Humanos , Neoplasias Gástricas/patologia , Interleucina-33/genética , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Carcinogênese/genética , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral
20.
Sci Adv ; 9(47): eadi8454, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000027

RESUMO

Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa