Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 79(1): 84-98.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32526163

RESUMO

Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.


Assuntos
Azepinas/farmacologia , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Interneurônios/patologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Síndrome de Rett/patologia , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Triazóis/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Fatores de Transcrição/genética
2.
Nat Methods ; 16(11): 1169-1175, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591580

RESUMO

Human cortical organoids (hCOs), derived from human embryonic stem cells (hESCs), provide a platform to study human brain development and diseases in complex three-dimensional tissue. However, current hCOs lack microvasculature, resulting in limited oxygen and nutrient delivery to the inner-most parts of hCOs. We engineered hESCs to ectopically express human ETS variant 2 (ETV2). ETV2-expressing cells in hCOs contributed to forming a complex vascular-like network in hCOs. Importantly, the presence of vasculature-like structures resulted in enhanced functional maturation of organoids. We found that vascularized hCOs (vhCOs) acquired several blood-brain barrier characteristics, including an increase in the expression of tight junctions, nutrient transporters and trans-endothelial electrical resistance. Finally, ETV2-induced endothelium supported the formation of perfused blood vessels in vivo. These vhCOs form vasculature-like structures that resemble the vasculature in early prenatal brain, and they present a robust model to study brain disease in vitro.


Assuntos
Encéfalo/irrigação sanguínea , Células-Tronco Embrionárias Humanas/citologia , Organoides/irrigação sanguínea , Engenharia Tecidual/métodos , Animais , Barreira Hematoencefálica , Células Cultivadas , Humanos , Camundongos , Análise de Célula Única , Fatores de Transcrição/fisiologia
3.
Nucleic Acids Res ; 45(10): e77, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28126923

RESUMO

Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regiões Promotoras Genéticas , Análise de Célula Única/métodos , Linhagem Celular , Linhagem Celular Tumoral , Mapeamento Cromossômico , Enzimas de Restrição do DNA/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Variação Genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células K562 , Linfócitos/citologia , Linfócitos/metabolismo
4.
Hum Mol Genet ; 23(4): 1045-55, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24129406

RESUMO

Rett syndrome (RTT) is one of the most prevalent female mental disorders. De novo mutations in methyl CpG-binding protein 2 (MeCP2) are a major cause of RTT. MeCP2 regulates gene expression as a transcription regulator as well as through long-range chromatin interaction. Because MeCP2 is present on the X chromosome, RTT is manifested in an X-linked dominant manner. Investigation using murine MeCP2 null models and post-mortem human brain tissues has contributed to understanding the molecular and physiological function of MeCP2. In addition, RTT models using human induced pluripotent stem cells derived from RTT patients (RTT-iPSCs) provide novel resources to elucidate the regulatory mechanism of MeCP2. Previously, we obtained clones of female RTT-iPSCs that express either wild-type or mutant MECP2 due to the inactivation of one X chromosome. Reactivation of the X chromosome also allowed us to have RTT-iPSCs that express both wild-type and mutant MECP2. Using these unique pluripotent stem cells, we investigated the regulation of gene expression by MeCP2 in pluripotent stem cells by transcriptome analysis. We found that MeCP2 regulates genes encoding mitochondrial membrane proteins. In addition, loss of function in MeCP2 results in de-repression of genes on the inactive X chromosome. Furthermore, we showed that each mutation in MECP2 affects a partly different set of genes. These studies suggest that fundamental cellular physiology is affected by mutations in MECP2 from early development, and that a therapeutic approach targeting to unique forms of mutant MeCP2 is needed.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Ligação a Metil-CpG/fisiologia , Transcrição Gênica , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Feminino , Ontologia Genética , Humanos , Mutação , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 108(34): 14169-74, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21807996

RESUMO

Rett syndrome (RTT) is one of the most prevalent female neurodevelopmental disorders that cause severe mental retardation. Mutations in methyl CpG binding protein 2 (MeCP2) are mainly responsible for RTT. Patients with classical RTT exhibit normal development until age 6-18 mo, at which point they become symptomatic and display loss of language and motor skills, purposeful hand movements, and normal head growth. Murine genetic models and postmortem human brains have been used to study the disease and enable the molecular dissection of RTT. In this work, we applied a recently developed reprogramming approach to generate a novel in vitro human RTT model. Induced pluripotent stem cells (iPSCs) were derived from RTT fibroblasts by overexpressing the reprogramming factors OCT4, SOX2, KLF4, and MYC. Intriguingly, whereas some iPSCs maintained X chromosome inactivation, in others the X chromosome was reactivated. Thus, iPSCs were isolated that retained a single active X chromosome expressing either mutant or WT MeCP2, as well as iPSCs with reactivated X chromosomes expressing both mutant and WT MeCP2. When these cells underwent neuronal differentiation, the mutant monoallelic or biallelelic RTT-iPSCs displayed a defect in neuronal maturation consistent with RTT phenotypes. Our in vitro model of RTT is an important tool allowing the further investigation of the pathophysiology of RTT and the development of the curative therapeutics.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Síndrome de Rett/patologia , Adulto , Sequência de Aminoácidos , Sequência de Bases , Biomarcadores/metabolismo , Diferenciação Celular/genética , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Células-Tronco Embrionárias/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Dados de Sequência Molecular , Neurônios/metabolismo , Síndrome de Rett/genética , Inativação do Cromossomo X/genética
6.
Circulation ; 126(14): 1695-704, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22914687

RESUMO

BACKGROUND: Supravalvular aortic stenosis (SVAS) is caused by mutations in the elastin (ELN) gene and is characterized by abnormal proliferation of vascular smooth muscle cells (SMCs) that can lead to narrowing or blockage of the ascending aorta and other arterial vessels. Having patient-specific SMCs available may facilitate the study of disease mechanisms and development of novel therapeutic interventions. METHODS AND RESULTS: Here, we report the development of a human induced pluripotent stem cell (iPSC) line from a patient with SVAS caused by the premature termination in exon 10 of the ELN gene resulting from an exon 9 four-nucleotide insertion. We showed that SVAS iPSC-derived SMCs (iPSC-SMCs) had significantly fewer organized networks of smooth muscle α-actin filament bundles, a hallmark of mature contractile SMCs, compared with control iPSC-SMCs. The addition of elastin recombinant protein or enhancement of small GTPase RhoA signaling was able to rescue the formation of smooth muscle α-actin filament bundles in SVAS iPSC-SMCs. Cell counts and BrdU analysis revealed a significantly higher proliferation rate in SVAS iPSC-SMCs than control iPSC-SMCs. Furthermore, SVAS iPSC-SMCs migrated at a markedly higher rate to the chemotactic agent platelet-derived growth factor compared with the control iPSC-SMCs. We also provided evidence that elevated activity of extracellular signal-regulated kinase 1/2 is required for hyperproliferation of SVAS iPSC-SMCs. The phenotype was confirmed in iPSC-SMCs generated from a patient with deletion of elastin owing to Williams-Beuren syndrome. CONCLUSIONS: SVAS iPSC-SMCs recapitulate key pathological features of patients with SVAS and may provide a promising strategy to study disease mechanisms and to develop novel therapies.


Assuntos
Estenose Aórtica Supravalvular/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Síndrome de Williams/patologia , Adulto , Animais , Células Cultivadas , Criança , Humanos , Masculino , Camundongos
7.
Sci Adv ; 9(31): eadf2245, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540754

RESUMO

Three-dimensional (3D) genomics shows immense promise for studying X chromosome inactivation (XCI) by interrogating changes to the X chromosomes' 3D states. Here, we sought to characterize the 3D state of the X chromosome in naïve and primed human pluripotent stem cells (hPSCs). Using chromatin tracing, we analyzed X chromosome folding conformations in these cells with megabase genomic resolution. X chromosomes in female naïve hPSCs exhibit folding conformations similar to the active X chromosome (Xa) and the inactive X chromosome (Xi) in somatic cells. However, naïve X chromosomes do not exhibit the chromatin compaction typically associated with these somatic X chromosome states. In H7 naïve human embryonic stem cells, XIST accumulation observed on damaged X chromosomes demonstrates the potential for naïve hPSCs to activate XCI-related mechanisms. Overall, our findings provide insight into the X chromosome status of naïve hPSCs with a single-chromosome resolution and are critical in understanding the unique epigenetic regulation in early embryonic cells.


Assuntos
Células-Tronco Pluripotentes , RNA Longo não Codificante , Humanos , Feminino , Epigênese Genética , Cromossomos Humanos X/genética , RNA Longo não Codificante/genética , Cromatina/genética
8.
Curr Opin Neurol ; 25(2): 125-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22357218

RESUMO

PURPOSE OF REVIEW: The lack of effective treatments for various neurodegenerative disorders has placed huge burdens on society. We review the current status in applying induced pluripotent stem cell (iPSC) technology for the cellular therapy, drug screening, and in-vitro modeling of neurodegenerative diseases. RECENT FINDINGS: iPSCs are generated from somatic cells by overexpressing four reprogramming factors (Oct4, Sox2, Klf4, and Myc). Like human embryonic stem cells, iPSCs have features of self-renewal and pluripotency, and allow in-vitro disease modeling, drug screening, and cell replacement therapy. Disease-specific iPSCs were derived from patients of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. Neurons differentiated from these iPSCs recapitulated the in-vivo phenotypes, providing platforms for drug screening. In the case of Parkinson's disease, iPSC-derived dopaminergic neurons gave positive therapeutic effect on a rodent Parkinson's disease model as a proof of principle in using iPSCs as sources of cell replacement therapy. Beyond iPSC technology, much effort is being made to generate neurons directly from dermal fibroblasts with neuron-specific transcription factors, which does not require making iPSCs as an intermediate cell type. SUMMARY: We summarize recent progress in using iPSCs for modeling the progress and treatment of neurodegenerative diseases and provide evidence for future perspectives in this field.


Assuntos
Doenças Neurodegenerativas/cirurgia , Células-Tronco Pluripotentes/fisiologia , Transplante de Células-Tronco/métodos , Diferenciação Celular , Proliferação de Células , Humanos , Fator 4 Semelhante a Kruppel
9.
FASEB J ; 22(5): 1502-11, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18171693

RESUMO

Complement-C1q TNF-related protein 1 (CTRP1), a member of the CTRP superfamily, is expressed at high levels in adipose tissues of obese Zucker diabetic fatty (fa/fa) rats, and CTRP1 expression is induced by proinflammatory cytokines, including TNF-alpha and IL-1beta. In the present study, we investigated stimulation of aldosterone production by CTRP1, since it was observed that CTRP1 was specifically expressed in the zona glomerulosa of the adrenal cortex, where aldosterone is produced. Increased aldosterone production by CTRP1 in cells of the human adrenal cortical cell line H295R was dose-dependent. Expression levels of aldosterone synthase CYP11B2 were examined to investigate the molecular mechanisms by which CTRP1 enhances the production of aldosterone. The expression of CYP11B2 was greatly increased by treatment with CTRP1, as was the expression of the transcription factors NGFIB and NURR1, which play critical roles in stimulation of CYP11B2 gene expression. It was also revealed that angiotensin II-induced aldosterone production is, at least in part, mediated by the stimulation of CTRP1 secretion, not by the increase of CTRP1 mRNA transcription. In addition, the levels of CTRP1 were significantly up-regulated in hypertensive patients' serum. As CTRP1 was highly expressed in obese subjects as well as up-regulated in hypertensive patients, CTRP1 may be a newly identified molecular link between obesity and hypertension.


Assuntos
Adipocinas/fisiologia , Aldosterona/biossíntese , Proteínas/fisiologia , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Citocromo P-450 CYP11B2/genética , Proteínas de Ligação a DNA/biossíntese , Humanos , Hipertensão/sangue , Losartan/farmacologia , Masculino , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores de Esteroides/biossíntese , Fatores de Transcrição/biossíntese , Células Tumorais Cultivadas
10.
J Cell Biol ; 218(8): 2564-2582, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31308215

RESUMO

A defining feature of embryonic stem cells (ESCs) is the ability to differentiate into all three germ layers. Pluripotency is maintained in part by a unique transcription network that maintains expression of pluripotency-specific transcription factors and represses developmental genes. While the mechanisms that establish this transcription network are well studied, little is known of the posttranscriptional surveillance pathways that degrade differentiation-related RNAs. We report that the surveillance pathway mediated by the RNA exosome nuclease complex represses ESC differentiation. Depletion of the exosome expedites differentiation of human ESCs into all three germ layers. LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression are all bound by the exosome and increase in level upon exosome depletion. The exosome restrains differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. Our studies establish the exosome as a regulator of human ESC differentiation and reveal the importance of RNA decay in maintaining pluripotency.


Assuntos
Diferenciação Celular , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Reagentes de Ligações Cruzadas/química , Endoderma/embriologia , Endoderma/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Mesoderma/embriologia , Mesoderma/metabolismo , MicroRNAs/genética , Fenótipo , RNA/isolamento & purificação , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Transgenes
11.
Cell Stem Cell ; 24(3): 487-497.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799279

RESUMO

Human brain organoid techniques have rapidly advanced to facilitate investigating human brain development and diseases. These efforts have largely focused on generating telencephalon due to its direct relevance in a variety of forebrain disorders. Despite its importance as a relay hub between cortex and peripheral tissues, the investigation of three-dimensional (3D) organoid models for the human thalamus has not been explored. Here, we describe a method to differentiate human embryonic stem cells (hESCs) to thalamic organoids (hThOs) that specifically recapitulate the development of thalamus. Single-cell RNA sequencing revealed a formation of distinct thalamic lineages, which diverge from telencephalic fate. Importantly, we developed a 3D system to create the reciprocal projections between thalamus and cortex by fusing the two distinct region-specific organoids representing the developing thalamus or cortex. Our study provides a platform for understanding human thalamic development and modeling circuit organizations and related disorders in the brain.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Organoides/citologia , Organoides/metabolismo , Tálamo/citologia , Humanos , Modelos Biológicos
12.
Cancer Lett ; 261(2): 253-62, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18164124

RESUMO

Obesity is one of the potential risk factors in causing breast cancer. As a result, adipose tissue surrounding breast ductal cells may play an important role in the breast cancer development or progression. To identify the genes that are regulated by factors secreted from adipocytes in breast cancer cells, MDA-MB-231 cells were treated with the culture medium of adipocytes. Most of induced genes were related to immune function and wound healing, which share a common gene expression signature with cancer progression. In present study macrophage inhibitory cytokine 1 (MIC-1) gene was studied among the induced genes. It was found that both MIC-1 mRNA and protein were dramatically increased by the culture medium of adipocytes. Furthermore, proteinase K-treated adipocyte culture supernatants also induced MIC-1 expression. These findings indicate that proteins are not major MIC-1 inducing factors in adipocyte culture medium. Consequently, we examined the effect of free fatty acids such as palmitate and oleate on MIC-1 induction and found that palmitate markedly induced MIC-1 gene expression, whereas oleate did not. Adipocyte culture medium- and palmitate-induced MIC-1 gene expression was mediated by the activation of p38 MAPK, but not by the activation of JNK, ERK, and NF-kappaB pathway. In addition, adipocyte-CM-induced MIC-1 also increased invasiveness of MDA-MB-231 cells.


Assuntos
Adipócitos/citologia , Neoplasias da Mama/metabolismo , Citocinas/metabolismo , Animais , Western Blotting , Neoplasias da Mama/patologia , Movimento Celular , Células Cultivadas , Meios de Cultura/farmacologia , Citocinas/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 15 de Diferenciação de Crescimento , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Análise em Microsséries , NF-kappa B/genética , NF-kappa B/metabolismo , Células NIH 3T3 , Invasividade Neoplásica , Palmitatos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cicatrização , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Proc Inst Mech Eng H ; 232(8): 779-786, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29993331

RESUMO

To ensure accurate glucose readings when dispensing glucose oxidase enzyme solution from a jetting dispenser onto glucose test strips fabricated from an immersion gold-plated printed circuit board, every drop of the enzyme solution needs to have nearly the same weight and to be dispensed on the reaction zone of the test strips. Experimental results in this study show that the filling pressure in the fluid reservoir containing the glucose enzyme solution to dispense onto the test strips significantly affect the glucose test results. A filling pressure of 12 psi produces test strips with lower coefficient of variation and standard deviation than 10 and 14 psi. Proper filling pressure for dispensing glucose enzyme onto glucose test strips needs to be determined for any enzyme compound formulation.


Assuntos
Análise Química do Sangue/instrumentação , Glicemia/análise , Equipamentos e Provisões Elétricas , Ouro , Pressão , Impressão , Fitas Reagentes , Imersão
14.
Artigo em Inglês | MEDLINE | ID: mdl-30854156

RESUMO

Three-dimensional (3D) brain organoid culture has become an essential tool for investigating human brain development and modeling neurological disorders during the past few years. Given the specific regionalization during brain development, it is important to produce distinct brain organoids that reproduce different brain regions and their interaction. The authors' laboratory recently established the platform to generate brain organoids resembling the medial ganglionic eminence (MGE), a specific brain region responsible for interneurogenesis, and found when fusing with organoid resembling the cortex, the fused organoids enabled modeling of interneuron migration in the brain. This unit describes four basic protocols that have been successfully applied in the authors' laboratory, covering the generation of embryonic body (EB) with neuroectodermal fate, the production of MGE organoids (hMGEOs) and cortical organoids (hCOs), and the fusion of the two organoids.


Assuntos
Encéfalo , Técnicas de Cultura de Órgãos , Organoides , Humanos , Interneurônios/citologia , Eminência Mediana/citologia , Neurogênese , Células-Tronco Pluripotentes
15.
Nat Commun ; 9(1): 2583, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968706

RESUMO

Embryonic stem cells (ESCs) maintain pluripotency through unique epigenetic states. When ESCs commit to a specific lineage, epigenetic changes in histones and DNA accompany the transition to specialized cell types. Investigating how epigenetic regulation controls lineage specification is critical in order to generate the required cell types for clinical applications. Uhrf1 is a widely known hemi-methylated DNA-binding protein, playing a role in DNA methylation through the recruitment of Dnmt1 and in heterochromatin formation alongside G9a, Trim28, and HDACs. Although Uhrf1 is not essential in ESC self-renewal, it remains elusive how Uhrf1 regulates cell specification. Here we report that Uhrf1 forms a complex with the active trithorax group, the Setd1a/COMPASS complex, to maintain bivalent histone marks, particularly those associated with neuroectoderm and mesoderm specification. Overall, our data demonstrate that Uhrf1 safeguards proper differentiation via bivalent histone modifications.


Assuntos
Reprogramação Celular/genética , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Técnicas de Reprogramação Celular , Quimera , Metilação de DNA/fisiologia , Epigênese Genética , Feminino , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/isolamento & purificação , Histonas/metabolismo , Humanos , Masculino , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Células-Tronco Embrionárias Murinas , Placa Neural/citologia , Placa Neural/fisiologia , Proteínas Nucleares/genética , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases
16.
Cell Stem Cell ; 21(3): 383-398.e7, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28757360

RESUMO

Organoid techniques provide unique platforms to model brain development and neurological disorders. Whereas several methods for recapitulating corticogenesis have been described, a system modeling human medial ganglionic eminence (MGE) development, a critical ventral brain domain producing cortical interneurons and related lineages, has been lacking until recently. Here, we describe the generation of MGE and cortex-specific organoids from human pluripotent stem cells that recapitulate the development of MGE and cortex domains, respectively. Population and single-cell RNA sequencing (RNA-seq) profiling combined with bulk assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses revealed transcriptional and chromatin accessibility dynamics and lineage relationships during MGE and cortical organoid development. Furthermore, MGE and cortical organoids generated physiologically functional neurons and neuronal networks. Finally, fusing region-specific organoids followed by live imaging enabled analysis of human interneuron migration and integration. Together, our study provides a platform for generating domain-specific brain organoids and modeling human interneuron migration and offers deeper insight into molecular dynamics during human brain development.


Assuntos
Encéfalo/embriologia , Movimento Celular , Interneurônios/citologia , Modelos Biológicos , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Encéfalo/citologia , Diferenciação Celular , Linhagem da Célula , Córtex Cerebral/citologia , Cromatina/metabolismo , Humanos , Interneurônios/metabolismo , Eminência Mediana/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
17.
FEBS Lett ; 580(16): 3953-60, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16806199

RESUMO

CTRP1, a member of the CTRP superfamily, consists of an N-terminal signal peptide sequence followed by a variable region, a collagen repeat domain, and a C-terminal globular domain. CTRP1 is expressed at high levels in adipose tissues of LPS-stimulated Sprague-Dawley rats. The LPS-induced increase in CTRP1 gene expression was found to be mediated by TNF-alpha and IL-1beta. Also, a high level of expression of CTRP1 mRNA was observed in adipose tissues of Zucker diabetic fatty (fa/fa) rats, compared to Sprague-Dawley rats in the absence of LPS stimulation. These findings indicate that CTRP1 expression may be associated with a low-grade chronic inflammation status in adipose tissues.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1/farmacologia , Proteínas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adipocinas/química , Adipocinas/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Dados de Sequência Molecular , Obesidade , Proteínas/química , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Alinhamento de Sequência
18.
Cancer Res ; 63(15): 4648-55, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12907645

RESUMO

In our search for genes associated with gastric cancer progression, we identified macrophage inhibitory cytokine-1 (MIC-1), a member of the transforming growth factor beta superfamily, as an overexpressed gene in gastric tumor tissues. Expression analysis of MIC-1 in gastric tumor tissues revealed a specific expression in gastric cancer cells, and this expression level was well correlated with invasive potential in various human gastric cancer cell lines. Stable transfection of MIC-1 into SNU-216, a human gastric cancer cell line, significantly increased its invasiveness. The overexpression of MIC-1 into SNU-216 cells significantly increased the activity of urokinase-type plasminogen activator (uPA), and the expressions of uPA and urokinase-type plasminogen activator receptor (uPAR). Similarly, the stimulation of gastric cancer cell lines with purified recombinant MIC-1 dose-dependently increased cell invasiveness, uPA activity, and uPA and uPAR expression. However, MIC-1 did not significantly suppress the proliferation of gastric cancer cell lines. We also found that the stimulation of human gastric cell lines with recombinant MIC-1 strongly induced activation of mitogen-activated protein kinase kinase-1/2 and extracellular signal-regulated kinase-1/2. Additional analysis revealed that PD98059, a selective inhibitor of mitogen-activated protein kinase kinase-1/2, suppressed not only gastric cancer cell invasiveness and uPA activity, but also the mRNA expressions of uPA and uPAR, as induced by recombinant MIC-1. Our results indicate that MIC-1 may contribute to the malignant progression of gastric cancer cells by inducing tumor cell invasion through the up-regulation of the uPA activation system via extracellular signal-regulated kinase-1/2-dependent pathway.


Assuntos
Citocinas/fisiologia , Neoplasias Gástricas/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Citocinas/biossíntese , Citocinas/genética , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fator 15 de Diferenciação de Crescimento , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Proteínas Recombinantes/farmacologia , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transfecção , Fator de Crescimento Transformador beta/farmacologia , Células Tumorais Cultivadas , Regulação para Cima
19.
Sci Rep ; 6: 35355, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752090

RESUMO

DNA methylation is an important epigenetic mark that regulates gene expression. Dnmt1 plays an important role in maintaining DNA methylation patterns on daughter DNA strands. Studies have shed light into the functional role of Dnmt1 regulation in the hematopoietic and epidermal systems. Here we show that Dnmt1 is required for myogenesis. Loss of Dnmt1 results in reduced expression of myogenic genes and defects in myogenic differentiation. We have utilized a conditional knockout mouse approach to examine the functional consequences of Dnmt1 depletion specifically in the developing muscle. These mice were born runted, with smaller body weights, and reduced ability to form myotubes in vitro. We show that expression of Id-1, a negative regulator of myogenesis, is enhanced in Dnmt1-deficient cultures, leading to enhanced transdifferentiation of myoblasts toward the osteogenic lineage. Thus, these studies demonstrate that Dnmt1 influences cellular identity and determines lineage fidelity.


Assuntos
Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Proteína 1 Inibidora de Diferenciação/genética , Desenvolvimento Muscular/genética , Animais , Benzomorfanos , Linhagem da Célula/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteína 1 Inibidora de Diferenciação/metabolismo , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
20.
Stem Cell Reports ; 7(1): 43-54, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27373925

RESUMO

Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs) have been shown to be highly similar to embryonic stem cells (ESCs). However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.


Assuntos
Metilação de DNA/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética , Reprogramação Celular/genética , Epigênese Genética/genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa