RESUMO
Here, we report the groundwater oxygen isotope anomalies caused by the 2016 Kumamoto earthquake (MJMA7.3) that occurred in Southwest Japan on April 16, 2016. One hundred and seventeen groundwater samples were collected from a deep well located 3 km to the southeast of the epicenter in Mifune Town, Kumamoto Prefecture; they were drinking water packed in PET bottles and distributed in the area between April 2015 and March 2018. Further, the oxygen and hydrogen isotopes were evaluated via cavity ring-down spectroscopy without performing any pretreatment. An anomalous increase was observed with respect to the δ18O value (up to 0.51) soon after the earthquake along with a precursory increase of 0.38 in January 2016 before the earthquake. During these periods, there was no noticeable change in the hydrogen isotopic ratios. Rapid crustal deformation related to the earthquake may have enhanced the microfracturing of the aquifer rocks and the production of new surfaces, inducing δ18O enrichment via oxygen isotopic exchange between rock and porewater without changing δ2H.
Assuntos
Terremotos , Água Subterrânea/química , Oxigênio/análise , JapãoRESUMO
RATIONALE: The three oxygen isotopes in terrestrial/extraterrestrial silicates can provide geochemical and cosmochemical information about their origin and secondary processes that result from isotopic exchange. A laser fluorination technique has been widely used to extract oxygen from silicates for δ17 O and δ18 O measurements by isotope ratio mass spectrometry. Continued improvement of the techniques is still important for high-precision measurement of oxygen-isotopic ratios. METHODS: We adopted an automated lasing technique to obtain reproducible fluorination of silicates using a CO2 laser-BrF5 fluorination system connected online to an isotope ratio mass spectrometer. The automated lasing technique enables us to perform high-precision analysis of the three oxygen isotopes of typical reference materials (e.g., UWG2 garnet, NBS28 quartz and San Carlos olivine) and in-house references (mid-ocean ridge basalt glass and obsidian). The technique uses a built-in application of laser control with which the laser power can be varied in a programmed manner with a defocused beam which is in a fixed position. RESULTS: The oxygen isotope ratios of some international reference materials analyzed by the manual lasing technique were found to be isotopically lighter with wider variations in δ18 O values, whereas those measured by the automated lasing technique gave better reproducibility (less than 0.2, 2SD). The Δ17 O values, an excess of the δ17 O value relative to the fractionation line, also showed high reproducibility (±0.02, 2SD). CONCLUSIONS: The system described herein provides high-precision δ17 O and δ18 O measurements of silicate materials. The use of the automated lasing technique followed by careful and controlled purification procedures is preferred to achieve satisfactory isotopic ratio results.
RESUMO
Geochemical monitoring of groundwater in seismically-active regions has been carried out since 1970s. Precursors were well documented, but often criticized for anecdotal or fragmentary signals, and for lacking a clear physico-chemical explanation for these anomalies. Here we report - as potential seismic precursor - oxygen isotopic ratio anomalies of +0.24 relative to the local background measured in groundwater, a few months before the Tottori earthquake (M 6.6) in Southwest Japan. Samples were deep groundwater located 5 km west of the epicenter, packed in bottles and distributed as drinking water between September 2015 and July 2017, a time frame which covers the pre- and post-event. Small but substantial increase of 0.07 was observed soon after the earthquake. Laboratory crushing experiments of aquifer rock aimed to simulating rock deformation under strain and tensile stresses were carried out. Measured helium degassing from the rock and 18O-shift suggest that the co-seismic oxygen anomalies are directly related to volumetric strain changes. The findings provide a plausible physico-chemical basis to explain geochemical anomalies in water and may be useful in future earthquake prediction research.