Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(3): 565-79, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766806

RESUMO

The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.


Assuntos
Pontos de Checagem do Ciclo Celular , Miócitos Cardíacos/citologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Sequestradores de Radicais Livres/farmacologia , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Peixe-Zebra
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474061

RESUMO

Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to the diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain-like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD. Despite the HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl-/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl+/- mice showed a significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl-/- and Mlkl+/- mice on the HFHFrHC diet resisted diet-induced obesity, attributed to the increased beiging, enhanced oxygen consumption, and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue-specific effects of MLKL on the liver and adipose tissue, and they suggest a dose-dependent effect of MLKL on liver pathology.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Frutose , Proteínas Quinases/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo/metabolismo , Inflamação , Colesterol , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
J Neurosci ; 42(31): 5992-6006, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35760531

RESUMO

Cognitive decline is a debilitating aspect of aging and neurodegenerative diseases such as Alzheimer's disease are closely associated with mitochondrial dysfunction, increased reactive oxygen species, neuroinflammation, and astrogliosis. This study investigated the effects of decreased mitochondrial antioxidant response specifically in astrocytes on cognitive performance and neuronal function in C57BL/6J mice using a tamoxifen-inducible astrocyte-specific knockout of manganese superoxide dismutase (aSOD2-KO), a mitochondrial matrix antioxidant that detoxifies superoxide generated during mitochondrial respiration. We reduced astrocyte SOD2 levels in male and female mice at 11-12 months of age and tested in an automated home cage (PhenoTyper) apparatus for diurnal patterns, spatial learning, and memory function at 15 months of age. aSOD2-KO impaired hippocampal-dependent spatial working memory and decreased cognitive flexibility in the reversal phase of the testing paradigm in males. Female aSOD2-KO showed no learning and memory deficits compared with age-matched controls despite significant reduction in hippocampal SOD2 expression. aSOD2-KO males further showed decreased hippocampal long-term potentiation, but paired-pulse facilitation was unaffected. Levels of d-serine, an NMDA receptor coagonist, were also reduced in aSOD2-KO mice, but female knockouts showed a compensatory increase in serine racemase expression. Furthermore, aSOD2-KO mice demonstrated increased density of astrocytes, indicative of astrogliosis, in the hippocampus compared with age-matched controls. These data demonstrate that reduction in mitochondrial antioxidant stress response in astrocytes recapitulates age-related deficits in cognitive function, d-serine availability, and astrogliosis. Therefore, improving astrocyte mitochondrial homeostasis may provide a therapeutic target for intervention for cognitive impairment in aging.SIGNIFICANCE STATEMENT Diminished antioxidant response is associated with increased astrogliosis in aging and in Alzheimer's disease. Manganese superoxide dismutase (SOD2) is an antioxidant in the mitochondrial matrix that detoxifies superoxide and maintains mitochondrial homeostasis. We show that astrocytic ablation of SOD2 impairs hippocampal-dependent plasticity in spatial working memory, reduces long-term potentiation of hippocampal neurons and levels of the neuromodulator d-serine, and increases astrogliosis, consistent with defects in advanced aging and Alzheimer's disease. Our data provide strong evidence for sex-specific effects of astrocytic SOD2 functions in age-related cognitive dysfunction.


Assuntos
Doença de Alzheimer , Astrócitos , Superóxido Dismutase , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/metabolismo , Astrócitos/metabolismo , Cognição/fisiologia , Feminino , Gliose/metabolismo , Hipocampo/metabolismo , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Serina/metabolismo , Fatores Sexuais , Superóxido Dismutase/genética , Superóxidos/metabolismo
4.
J Neurochem ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415312

RESUMO

The mitochondrial calcium uniporter (MCU) is the main route of calcium (Ca2+ ) entry into neuronal mitochondria. This channel has been linked to mitochondrial Ca2+ overload and cell death under neurotoxic conditions, but its physiologic roles for normal brain function remain poorly understood. Despite high expression of MCU in excitatory hippocampal neurons, it is unknown whether this channel is required for learning and memory. Here, we genetically down-regulated the Mcu gene in dentate granule cells (DGCs) of the hippocampus and found that this manipulation increases the overall respiratory activity of mitochondrial complexes I and II, augmenting the generation of reactive oxygen species in the context of impaired electron transport chain. The metabolic remodeling of MCU-deficient neurons also involved changes in the expression of enzymes that participate in glycolysis and the regulation of the tricarboxylic acid cycle, as well as the cellular antioxidant defenses. We found that MCU deficiency in DGCs does not change circadian rhythms, spontaneous exploratory behavior, or cognitive function in middle-aged mice (11-13 months old), when assessed with a food-motivated working memory test with three choices. DGC-targeted down-regulation of MCU significantly impairs reversal learning assessed with an 8-arm radial arm water maze but does not affect their ability to learn the task for the first time. Our results indicate that neuronal MCU plays an important physiologic role in memory formation and may be a potential therapeutic target to develop interventions aimed at improving cognitive function in aging, neurodegenerative diseases, and brain injury.

5.
Nature ; 541(7636): 222-227, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798600

RESUMO

The adult mammalian heart is incapable of regeneration following cardiomyocyte loss, which underpins the lasting and severe effects of cardiomyopathy. Recently, it has become clear that the mammalian heart is not a post-mitotic organ. For example, the neonatal heart is capable of regenerating lost myocardium, and the adult heart is capable of modest self-renewal. In both of these scenarios, cardiomyocyte renewal occurs via the proliferation of pre-existing cardiomyocytes, and is regulated by aerobic-respiration-mediated oxidative DNA damage. Therefore, we reasoned that inhibiting aerobic respiration by inducing systemic hypoxaemia would alleviate oxidative DNA damage, thereby inducing cardiomyocyte proliferation in adult mammals. Here we report that, in mice, gradual exposure to severe systemic hypoxaemia, in which inspired oxygen is gradually decreased by 1% and maintained at 7% for 2 weeks, results in inhibition of oxidative metabolism, decreased reactive oxygen species production and oxidative DNA damage, and reactivation of cardiomyocyte mitosis. Notably, we find that exposure to hypoxaemia 1 week after induction of myocardial infarction induces a robust regenerative response with decreased myocardial fibrosis and improvement of left ventricular systolic function. Genetic fate-mapping analysis confirms that the newly formed myocardium is derived from pre-existing cardiomyocytes. These results demonstrate that the endogenous regenerative properties of the adult mammalian heart can be reactivated by exposure to gradual systemic hypoxaemia, and highlight the potential therapeutic role of hypoxia in regenerative medicine.


Assuntos
Coração/crescimento & desenvolvimento , Hipóxia/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Regeneração , Medicina Regenerativa/métodos , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Proliferação de Células , Respiração Celular , Dano ao DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitose , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Esquerda
6.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670798

RESUMO

Free radicals, or reactive oxygen species, have been implicated as one of the primary causes of myocardial pathologies elicited by chronic diseases and age. The imbalance between pro-oxidants and antioxidants, termed "oxidative stress", involves several pathological changes in mouse hearts, including hypertrophy and cardiac dysfunction. However, the molecular mechanisms and adaptations of the hearts in mice lacking cytoplasmic superoxide dismutase (Sod1KO) have not been investigated. We used echocardiography to characterize cardiac function and morphology in vivo. Protein expression and enzyme activity of Sod1KO were confirmed by targeted mass spectrometry and activity gel. The heart weights of the Sod1KO mice were significantly increased compared with their wildtype peers. The increase in heart weights was accompanied by concentric hypertrophy, posterior wall thickness of the left ventricles (LV), and reduced LV volume. Activated downstream pathways in Sod1KO hearts included serine-threonine kinase and ribosomal protein synthesis. Notably, the reduction in LV volume was compensated by enhanced systolic function, measured by increased ejection fraction and fractional shortening. A regulatory sarcomeric protein, troponin I, was hyper-phosphorylated in Sod1KO, while the vinculin protein was upregulated. In summary, mice lacking cytoplasmic superoxide dismutase were associated with an increase in heart weights and concentric hypertrophy, exhibiting a pathological adaptation of the hearts to oxidative stress.


Assuntos
Miocárdio/patologia , Estresse Oxidativo , Sístole , Animais , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibrose , Hipertrofia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Oxirredução , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Ribossômicas/biossíntese , Ribossomos/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Troponina I/metabolismo
7.
J Biol Chem ; 294(45): 16831-16845, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31562244

RESUMO

The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Metabolic inflexibility, such as occurs with diabetes, increases cardiac reliance on fatty acids to meet energetic demands, and this results in deleterious effects, including mitochondrial dysfunction, that contribute to pathophysiology. Enhancing glucose usage may mitigate metabolic inflexibility and be advantageous under such conditions. Here, we sought to identify how mitochondrial function and cardiac metabolism are affected in a transgenic mouse model of enhanced cardiac glycolysis (GlycoHi) basally and following a short-term (7-day) high-fat diet (HFD). GlycoHi mice constitutively express an active form of phosphofructokinase-2, resulting in elevated levels of the PFK-1 allosteric activator fructose 2,6-bisphosphate. We report that basally GlycoHi mitochondria exhibit augmented pyruvate-supported respiration relative to fatty acids. Nevertheless, both WT and GlycoHi mitochondria had a similar shift toward increased rates of fatty acid-supported respiration following HFD. Metabolic profiling by GC-MS revealed distinct features based on both genotype and diet, with a unique increase in branched-chain amino acids in the GlycoHi HFD group. Targeted quantitative proteomics analysis also supported both genotype- and diet-dependent changes in protein expression and uncovered an enhanced expression of pyruvate dehydrogenase kinase 4 (PDK4) in the GlycoHi HFD group. These results support a newly identified mechanism whereby the levels of fructose 2,6-bisphosphate promote mitochondrial PDK4 levels and identify a secondary adaptive response that prevents excessive mitochondrial pyruvate oxidation when glycolysis is sustained after a high-fat dietary challenge.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glicólise/efeitos dos fármacos , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glucose/metabolismo , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/citologia , Proteômica , Estresse Fisiológico , Fatores de Tempo
8.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29420235

RESUMO

Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.


Assuntos
Endopeptidase Clp/genética , Resistência à Insulina/genética , Mitocôndrias/genética , Obesidade/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Resposta a Proteínas não Dobradas/genética
9.
J Biol Chem ; 293(18): 6915-6924, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29540486

RESUMO

Cardiac energy is produced primarily by oxidation of fatty acids and glucose, with the relative contributions of each nutrient being sensitive to changes in substrate availability and energetic demand. A major contributor to cardiac metabolic flexibility is pyruvate dehydrogenase (PDH), which converts glucose-derived pyruvate to acetyl-CoA within the mitochondria. PDH is inhibited by phosphorylation dependent on the competing activities of pyruvate dehydrogenase kinases (PDK1-4) and phosphatases (PDP1-2). A single high-fat meal increases cardiac PDK4 content and subsequently inhibits PDH activity, reducing pyruvate utilization when abundant fatty acids are available. In this study, we demonstrate that diet-induced increases in PDK4 are reversible and characterize a novel pathway that regulates PDK4 degradation in response to the cardiac metabolic environment. We found that PDK4 degradation is promoted by CoA (CoASH), the levels of which declined in mice fed a high-fat diet and normalized following transition to a control diet. We conclude that CoASH functions as a metabolic sensor linking the rate of PDK4 degradation to fatty acid availability in the heart. However, prolonged high-fat feeding followed by return to a low-fat diet resulted in persistent in vitro sensitivity of PDH to fatty acid-induced inhibition despite reductions in PDK4 content. Moreover, increases in the levels of proteins responsible for ß-oxidation and rates of palmitate oxidation by isolated cardiac mitochondria following long-term consumption of high dietary fat persisted after transition to the control diet. We propose that these changes prime PDH for inhibition upon reintroduction of fatty acids.


Assuntos
Coenzima A/metabolismo , Dieta Hiperlipídica , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Dieta com Restrição de Gorduras , Ácidos Graxos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Proteínas Serina-Treonina Quinases/genética , Proteólise , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/metabolismo
10.
J Biol Chem ; 292(1): 305-312, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27856638

RESUMO

Cardiac metabolic inflexibility is driven by robust up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) and phosphorylation-dependent inhibition of pyruvate dehydrogenase (PDH) within a single day of feeding mice a high fat diet. In the current study, we have discovered that PDK4 is a short lived protein (t½ ∼ 1 h) and is specifically degraded by the mitochondrial protease Lon. Lon does not rapidly degrade PDK1 and -2, indicating specificity toward the PDK isoform that is a potent modulator of metabolic flexibility. Moreover, PDK4 degradation appears regulated by dissociation from the PDH complex dependent on the respiratory state and energetic substrate availability of mouse heart mitochondria. Finally, we demonstrate that pharmacologic inhibition of PDK4 promotes PDK4 degradation in vitro and in vivo These findings reveal a novel strategy to manipulate PDH activity by selectively targeting PDK4 content through dissociation and proteolysis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Protease La/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Fosforilação , Protease La/genética , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/genética
11.
J Biol Chem ; 292(11): 4423-4433, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154187

RESUMO

Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miocárdio/patologia , Ácido Pirúvico/metabolismo , Acetilação , Animais , Proteínas de Transporte de Ânions/análise , Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/patologia , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/análise , Miocárdio/metabolismo , Oxirredução , Consumo de Oxigênio
12.
BMC Biol ; 15(1): 113, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183319

RESUMO

BACKGROUND: Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. RESULTS: We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα -/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. CONCLUSION: We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , PPAR alfa/genética , Retina/metabolismo , Neurônios Retinianos/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , PPAR alfa/metabolismo , Ratos , Ratos Sprague-Dawley
13.
J Neurochem ; 143(5): 595-608, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28902411

RESUMO

Diabetic retinopathy is a neurovascular diabetes complication resulting in vision loss. A wealth of literature reports retinal molecular changes indicative of neural deficits, inflammation, and vascular leakage with chronic diabetes, but the mechanistic causes of disease initiation and progression are unknown. Microvascular mitochondrial DNA (mtDNA) damage leading to mitochondrial dysfunction has been proposed to drive vascular dysfunction in retinopathy. However, growing evidence suggests that neural retina dysfunction precedes and may cause vascular damage. Therefore, we tested the hypothesis that neural mtDNA damage and mitochondrial dysfunction are an early initiating factor of neural diabetic retinopathy development in a rat streptozotocin-induced, Type I diabetes model. Mitochondrial function (oxygen consumption rates) was quantified in retinal synaptic terminals from diabetic and non-diabetic rats with paired retinal structural and function assessment (optical coherence tomography and electroretinography, respectively). Mitochondrial genome damage was assessed by identifying mutations and deletions across the mtDNA genome by high depth sequencing and absolute mtDNA copy number counting through digital PCR. Mitochondrial protein expression was assessed by targeted mass spectrometry. Retinal functional deficits and neural anatomical changes were present after 3 months of diabetes and prevented/normalized by insulin treatment. No marked dysfunction of mitochondrial activity, maladaptive changes in mitochondrial protein expression, alterations in mtDNA copy number, or increase in mtDNA damage was observed in conjunction with retinal functional and anatomical changes. These results demonstrate that neural retinal dysfunction with diabetes begins prior to mtDNA damage and dysfunction, and therefore retinal neurodegeneration initiation with diabetes occurs through other, non-mitochondrial DNA damage, mechanisms.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Retina/metabolismo , Animais , Dano ao DNA/genética , DNA Mitocondrial/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Genoma Mitocondrial , Ratos
14.
Mol Cell ; 35(2): 164-80, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19647514

RESUMO

Glutamyl-prolyl tRNA synthetase (EPRS) is a component of the heterotetrameric gamma-interferon-activated inhibitor of translation (GAIT) complex that binds 3'UTR GAIT elements in multiple interferon-gamma (IFN-gamma)-inducible mRNAs and suppresses their translation. Here, we elucidate the specific EPRS phosphorylation events that regulate GAIT-mediated gene silencing. IFN-gamma induces sequential phosphorylation of Ser(886) and Ser(999) in the noncatalytic linker connecting the synthetase cores. Phosphorylation of both sites is essential for EPRS release from the parent tRNA multisynthetase complex. Ser(886) phosphorylation is required for the interaction of NSAP1, which blocks EPRS binding to target mRNAs. The same phosphorylation event induces subsequent binding of ribosomal protein L13a and GAPDH and restores mRNA binding. Finally, Ser(999) phosphorylation directs the formation of a functional GAIT complex that binds initiation factor eIF4G and represses translation. Thus, two-site phosphorylation provides structural and functional pliability to EPRS and choreographs the repertoire of activities that regulates inflammatory gene expression.


Assuntos
Aminoacil-tRNA Sintetases/fisiologia , Inativação Gênica/fisiologia , Biossíntese de Proteínas/fisiologia , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Células Cultivadas , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Interferon gama/metabolismo , Interferon gama/fisiologia , Modelos Genéticos , Fosforilação , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA Mensageiro/fisiologia , Proteínas Ribossômicas/metabolismo , Serina/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 311(5): H1091-H1096, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614223

RESUMO

We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H2O2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H2O2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H2O2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H2O2, we found that catalase contributes significantly to mitochondrial H2O2 consumption. In addition, catalase is solely responsible for removal of H2O2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H2O2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H2O2 in response to high dietary fat, the selective increase in catalase did not prevent H2O2-induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H2O2 without perturbing redox-dependent signaling.


Assuntos
Catalase/genética , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo , Animais , Western Blotting , Catalase/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Camundongos , Camundongos Knockout , NADP/metabolismo , Oxirredução , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
16.
Mol Cell ; 32(3): 371-82, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18995835

RESUMO

Phosphorylation of ribosomal protein L13a is essential for translational repression of inflammatory genes by the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex. Here we show that IFN-gamma activates a kinase cascade in which death-associated protein kinase-1 (DAPK) activates zipper-interacting protein kinase (ZIPK), culminating in L13a phosphorylation on Ser(77), L13a release from the ribosome, and translational silencing of GAIT element-bearing target mRNAs. Remarkably, both kinase mRNAs contain functional 3'UTR GAIT elements, and thus the same inhibitory pathway activated by the kinases is co-opted to suppress their expression. Inhibition of DAPK and ZIPK facilitates cell restoration to the basal state and allows renewed induction of GAIT target transcripts by repeated stimulation. Thus, the DAPK-ZIPK-L13a axis forms a unique regulatory module that first represses, then repermits inflammatory gene expression. We propose that the module presents an important checkpoint in the macrophage "resolution of inflammation" program, and that pathway defects may contribute to chronic inflammatory disorders.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Inflamação/genética , MAP Quinase Quinase Quinases/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Inflamação/enzimologia , Inflamação/fisiopatologia , Fragmentos de Peptídeos/química , Fosforilação , Plasmídeos , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transfecção , Células U937
17.
PLoS Genet ; 9(9): e1003750, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039598

RESUMO

Functional characterization of causal variants present on risk haplotypes identified through genome-wide association studies (GWAS) is a primary objective of human genetics. In this report, we evaluate the function of a pair of tandem polymorphic dinucleotides, 42 kb downstream of the promoter of TNFAIP3, (rs148314165, rs200820567, collectively referred to as TT>A) recently nominated as causal variants responsible for genetic association of systemic lupus erythematosus (SLE) with tumor necrosis factor alpha inducible protein 3 (TNFAIP3). TNFAIP3 encodes the ubiquitin-editing enzyme, A20, a key negative regulator of NF-κB signaling. A20 expression is reduced in subjects carrying the TT>A risk alleles; however, the underlying functional mechanism by which this occurs is unclear. We used a combination of electrophoretic mobility shift assays (EMSA), mass spectrometry (MS), reporter assays, chromatin immunoprecipitation-PCR (ChIP-PCR) and chromosome conformation capture (3C) EBV transformed lymphoblastoid cell lines (LCL) from individuals carrying risk and non-risk TNFAIP3 haplotypes to characterize the effect of TT>A on A20 expression. Our results demonstrate that the TT>A variants reside in an enhancer element that binds NF-κB and SATB1 enabling physical interaction of the enhancer with the TNFAIP3 promoter through long-range DNA looping. Impaired binding of NF-κB to the TT>A risk alleles or knockdown of SATB1 expression by shRNA, inhibits the looping interaction resulting in reduced A20 expression. Together, these data reveal a novel mechanism of TNFAIP3 transcriptional regulation and establish the functional basis by which the TT>A risk variants attenuate A20 expression through inefficient delivery of NF-κB to the TNFAIP3 promoter. These results provide critical functional evidence supporting a direct causal role for TT>A in the genetic predisposition to SLE.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lúpus Eritematoso Sistêmico/genética , NF-kappa B/genética , Proteínas Nucleares/genética , Alelos , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Células HEK293 , Haplótipos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/patologia , Proteínas de Ligação à Região de Interação com a Matriz/antagonistas & inibidores , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
18.
Biochemistry ; 54(22): 3469-82, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25961473

RESUMO

Phosphorylation of the human p52Shc adaptor protein is a key determinant in modulating signaling complex assembly in response to tyrosine kinase signaling cascade activation. The underlying mechanisms that govern p52Shc phosphorylation status are unknown. In this study, p52Shc phosphorylation by human c-Src was investigated using purified proteins to define mechanisms that affect the p52Shc phosphorylation state. We conducted biophysical characterizations of both human p52Shc and human c-Src in solution as well as membrane-mimetic environments using the acidic lipid phosphatidylinositol 4-phosphate or a novel amphipathic detergent (2,2-dihexylpropane-1,3-bis-ß-D-glucopyranoside). We then identified p52Shc phosphorylation sites under various solution conditions, and the amount of phosphorylation at each identified site was quantified using mass spectrometry. These data demonstrate that the p52Shc phosphorylation level is altered by the solution environment without affecting the fraction of active c-Src. Mass spectrometry analysis of phosphorylated p52Shc implies functional linkage among phosphorylation sites. This linkage may drive preferential coupling to protein binding partners during signaling complex formation, such as during initial binding interactions with the Grb2 adaptor protein leading to activation of the Ras/MAPK signaling cascade. Remarkably, tyrosine residues involved in Grb2 binding were heavily phosphorylated in a membrane-mimetic environment. The increased phosphorylation level in Grb2 binding residues was also correlated with a decrease in the thermal stability of purified human p52Shc. A schematic for the phosphorylation-dependent interaction between p52Shc and Grb2 is proposed. The results of this study suggest another possible therapeutic strategy for altering protein phosphorylation to regulate signaling cascade activation.


Assuntos
Membrana Celular/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Quinases da Família src/química , Quinases da Família src/metabolismo , Proteína Tirosina Quinase CSK , Membrana Celular/química , Membrana Celular/genética , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatos de Fosfatidilinositol/química , Fosforilação/fisiologia , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Adaptadoras da Sinalização Shc/química , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Quinases da Família src/genética
19.
Biochemistry ; 54(25): 4008-18, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26061789

RESUMO

High-throughput proteomics studies have identified several thousand acetylation sites on more than 1000 proteins. Mitochondrial aconitase, the Krebs cycle enzyme that converts citrate to isocitrate, has been identified in many of these reports. Acetylated mitochondrial aconitase has also been identified as a target for sirtuin 3 (SIRT3)-catalyzed deacetylation. However, the functional significance of mitochondrial aconitase acetylation has not been determined. Using in vitro strategies, mass spectrometric analyses, and an in vivo mouse model of obesity, we found a significant acetylation-dependent activation of aconitase. Isolated heart mitochondria subjected to in vitro chemical acetylation with either acetic anhydride or acetyl-coenzyme A resulted in increased aconitase activity that was reversed with SIRT3 treatment. Quantitative mass spectrometry was used to measure acetylation at 21 lysine residues and revealed significant increases with both in vitro treatments. A high-fat diet (60% of kilocalories from fat) was used as an in vivo model and also showed significantly increased mitochondrial aconitase activity without changes in protein level. The high-fat diet also produced an increased level of aconitase acetylation at multiple sites as measured by the quantitative mass spectrometry assays. Treatment of isolated mitochondria from these mice with SIRT3 abolished the high-fat diet-induced activation of aconitase and reduced acetylation. Finally, kinetic analyses found that the increase in activity was a result of increased maximal velocity, and molecular modeling suggests the potential for acetylation at K144 to perturb the tertiary structure of the enzyme. The results of this study reveal a novel activation of mitochondrial aconitase by acetylation.


Assuntos
Aconitato Hidratase/metabolismo , Lisina/metabolismo , Mitocôndrias/enzimologia , Miocárdio/enzimologia , Acetilação , Aconitato Hidratase/química , Aconitato Hidratase/genética , Motivos de Aminoácidos , Animais , Lisina/química , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/química , Miocárdio/química , Miocárdio/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
20.
J Biol Chem ; 288(3): 1979-90, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23204527

RESUMO

Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H(2)O(2) production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H(2)O(2) produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H(2)O(2)-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization.


Assuntos
Tecido Adiposo/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/genética , Obesidade/sangue , Tecido Adiposo/patologia , Animais , Catalase/genética , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Jejum , Ácidos Graxos/sangue , Expressão Gênica , Insulina/sangue , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/enzimologia , Miocárdio/metabolismo , Obesidade/etiologia , Obesidade/patologia , Oxirredução , Estresse Oxidativo , Transdução de Sinais , Triglicerídeos/sangue , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa