Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Genomics ; 24(1): 496, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644460

RESUMO

Despite recent efforts to increase diversity in genome-wide association studies (GWASs), most loci currently associated with kidney function are still limited to European ancestry due to the underlying sample selection bias in available GWASs. We set out to identify susceptibility loci associated with estimated glomerular filtration rate (eGFRcrea) in 80027 individuals of African-ancestry from the UK Biobank (UKBB), Million Veteran Program (MVP), and Chronic Kidney Disease genetics (CKDGen) consortia.We identified 8 lead SNPs, 7 of which were previously associated with eGFR in other populations. We identified one novel variant, rs77408001 which is an intronic variant mapped to the ELN gene. We validated three previously reported loci at GATM-SPATA5L1, SLC15A5 and AGPAT3. Fine-mapping analysis identified variants rs77121243 and rs201602445 as having a 99.9% posterior probability of being causal. Our results warrant designing bigger studies within individuals of African ancestry to gain new insights into the pathogenesis of Chronic Kidney Disease (CKD), and identify genomic variants unique to this ancestry that may influence renal function and disease.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , População Negra/genética , Mutação , Insuficiência Renal Crônica/genética , Rim
2.
EBioMedicine ; 90: 104537, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37001235

RESUMO

BACKGROUND: Observational studies have investigated the effect of serum lipids on kidney function, but these findings are limited by confounding, reverse causation and have reported conflicting results. Mendelian randomization (MR) studies address this confounding problem. However, they have been conducted mostly in European ancestry individuals. We, therefore, set out to investigate the effect of lipid traits on the estimated glomerular filtration rate (eGFR) based on serum creatinine in individuals of African ancestry. METHODS: We used the two-sample and multivariable Mendelian randomization (MVMR) approaches; in which instrument variables (IV's) for the predictor (lipid traits) were derived from summary-level data of a meta-analyzed African lipid GWAS (MALG, n = 24,215) from the African Partnership for Chronic Disease Research (APCDR) (n = 13,612) & the Africa Wits-IN-DEPTH partnership for Genomics studies (AWI-Gen) dataset (n = 10,603). The outcome IV's were computed from the eGFR summary-level data of African-ancestry individuals within the Million Veteran Program (n = 57,336). A random-effects inverse variance method was used in our primary analysis, and pleiotropy was adjusted for using robust and penalized sensitivity testing. The lipid predictors for the MVMR were high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides (TG). FINDINGS: We found a significant causal association between genetically predicted low-density lipoprotein (LDL) cholesterol and eGFR in African ancestry individuals ß = 1.1 (95% CI [0.411-1.788]; p = 0.002). Similarly, total cholesterol (TC) showed a significant causal effect on eGFR ß = 1.619 (95% CI [0.412-2.826]; p = 0.009). However, the IVW estimate showed that genetically predicted HDL-C ß = -0.164, (95% CI = [-1.329 to 1.00]; p = 0.782), and TG ß = -0.934 (CI = [-2.815 to 0.947]; p = 0.33) were not significantly causally associated with the risk of eGFR. In the multivariable analysis inverse-variance weighted (MVIVW) method, there was evidence for a causal association between LDL and eGFR ß = 1.228 (CI = [0.477-1.979]; p = 0.001). A significant causal effect of Triglycerides (TG) on eGFR in the MVIVW analysis ß = -1.3 ([-2.533 to -0.067]; p = 0.039) was observed as well. All the causal estimates reported reflect a unit change in the outcome per a 1 SD increase in the exposure. HDL showed no evidence of a significant causal association with eGFR in the MVIVW method (ß = -0.117 (95% CI [-1.252 to 0.018]; p = 0.840)). We found no evidence of a reverse causal impact of eGFR on serum lipids. All our sensitivity analyses indicated no strong evidence of pleiotropy or heterogeneity between our instrumental variables for both the forward and reverse MR analysis. INTERPRETATION: In this African ancestry population, genetically predicted higher LDL-C and TC are causally associated with higher eGFR levels, which may suggest that the relationship between LDL, TC and kidney function may be U-shaped. And as such, lowering LDL_C does not necessarily improve risk of kidney disease. This may also imply the reason why LDL_C is seen to be a poorer predictor of kidney function compared to HDL. In addition, this further supports that more work is warranted to confirm the potential association between lipid traits and risk of kidney disease in individuals of African Ancestry. FUNDING: Wellcome (220740/Z/20/Z).


Assuntos
População Africana , Nefropatias , Rim , Lipídeos , Humanos , População Africana/genética , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/fisiologia , Rim/fisiopatologia , Nefropatias/sangue , Nefropatias/etnologia , Nefropatias/genética , Nefropatias/fisiopatologia , Lipídeos/sangue , Lipídeos/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Distribuição Aleatória , Fatores de Risco , Triglicerídeos/sangue
3.
EBioMedicine ; 95: 104775, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639939

RESUMO

BACKGROUND: Chronic kidney disease is becoming more prevalent in Africa, and its genetic determinants are poorly understood. Creatinine-based estimated glomerular filtration rate (eGFR) is commonly used to estimate kidney function, modelling the excretion of the endogenous biomarker (creatinine). However, eGFR based on creatinine has been shown to inadequately detect individuals with low kidney function in Sub-Saharan Africa, with eGFR based on cystatin-C (eGFRcys) exhibiting significantly superior performance. Therefore, we opted to conduct a GWAS for eGFRcys. METHODS: Using the Uganda Genomic Resource, we performed a genome-wide association study (GWAS) of eGFRcys in 5877 Ugandans and evaluated replication in independent studies. Subsequently, putative causal variants were screened through Bayesian fine-mapping. Functional annotation of the GWAS loci was performed using Functional Mapping and Annotation (FUMA). FINDINGS: Three independent lead single nucleotide polymorphisms (SNPs) (P-value <5 × 10-8 (based on likelihood ratio test (LRT))) were identified; rs59288815 (ANK3), rs4277141 (OR51B5) and rs911119 (CST3). From fine-mapping, rs59288815 and rs911119 each had a posterior probability of causality of >99%. The rs911119 SNP maps to the cystatin C gene and has been previously associated with eGFRcys among Europeans. With gene-set enrichment analyses of the olfactory receptor family 51 overlapping genes, we identified an association with the G-alpha-S signalling events. INTERPRETATION: Our study found two previously unreported associated SNPs for eGFRcys in continental Africans (rs59288815 and rs4277141) and validated a previously well-established SNP (rs911119) for eGFRcys. The identified gene-set enrichment for the G-protein signalling pathways relates to the capacity of the kidney to readily adapt to an ever-changing environment. Additional GWASs are required to represent the diverse regions in Africa. FUNDING: Wellcome (220740/Z/20/Z).


Assuntos
Cistatina C , Estudo de Associação Genômica Ampla , Rim , Humanos , Teorema de Bayes , Creatinina , Cistatina C/genética , Rim/fisiologia , Uganda
4.
Genes (Basel) ; 13(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36011371

RESUMO

BACKGROUND: According to observational studies, two polymorphisms in the apolipoprotein L1 (APOL1) gene have been linked to an increased risk of chronic kidney disease (CKD) in Africans. One polymorphism involves the substitution of two amino-acid residues (S342G and I384M; known as G1), while the other involves the deletion of two amino-acid residues in a row (N388 and Y389; termed G2). Despite the strong link between APOL1 polymorphisms and kidney disease, the molecular mechanisms via which these APOL1 mutations influence the onset and progression of CKD remain unknown. METHODS: To predict the active site and allosteric site on the APOL1 protein, we used the Computed Atlas of Surface Topography of Proteins (CASTp) and the Protein Allosteric Sites Server (PASSer). Using an extended molecular dynamics simulation, we investigated the characteristic structural perturbations in the 3D structures of APOL1 variants. RESULTS: According to CASTp's active site characterization, the topmost predicted site had a surface area of 964.892 Å2 and a pocket volume of 900.792 Å3. For the top three allosteric pockets, the allostery probability was 52.44%, 46.30%, and 38.50%, respectively. The systems reached equilibrium in about 125 ns. From 0-100 ns, there was also significant structural instability. When compared to G1 and G2, the wildtype protein (G0) had overall high stability throughout the simulation. The root-mean-square fluctuation (RMSF) of wildtype and variant protein backbone Cα fluctuations revealed that the Cα of the variants had a large structural fluctuation when compared to the wildtype. CONCLUSION: Using a combination of different computational techniques, we identified binding sites within the APOL1 protein that could be an attractive site for potential inhibitors of APOL1. Furthermore, the G1 and G2 mutations reduced the structural stability of APOL1.


Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Apolipoproteína L1/genética , População Negra , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia
5.
Cell Genom ; 2(11): None, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36388767

RESUMO

The Uganda Genome Resource (UGR) is a well-characterized genomic database with a range of phenotypic communicable and non-communicable diseases and risk factors generated from the Uganda General Population Cohort (GPC), a population-based open cohort established in 1989. The UGR comprises genotype data on ∼5,000 and whole-genome sequence data on ∼2,000 Ugandan GPC individuals from 10 ethno-linguistic groups. Leveraging other platforms at MRC/UVRI and LSHTM Uganda Research Unit, there is opportunity for additional sample collection to expand the UGR to advance scientific discoveries. Here, we describe UGR and highlight how it is providing opportunities for discovery of novel disease susceptibility genetic loci, refining association signals at new and existing loci, developing and testing polygenic scores to determine disease risk, assessing causal relations in diseases, and developing capacity for genomics research in Africa. The UGR has the potential to develop to a comparable level of European and Asian large-scale genomic initiatives.

6.
Am J Trop Med Hyg ; 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35576945

RESUMO

The second conference of the Nigerian Bioinformatics and Genomics Network (NBGN21) was held from October 11 to October 13, 2021. The event was organized by the Nigerian Bioinformatics and Genomics Network. A 1-day genomic analysis workshop on genome-wide association study and polygenic risk score analysis was organized as part of the conference. It was organized primarily as a research capacity building initiative to empower Nigerian researchers to take a leading role in this cutting-edge field of genomic data science. The theme of the conference was "Leveraging Bioinformatics and Genomics for the attainments of the Sustainable Development Goals." The conference used a hybrid approach-virtual and in-person. It served as a platform to bring together 235 registered participants mainly from Nigeria and virtually, from all over the world. NBGN21 had four keynote speakers and four leading Nigerian scientists received awards for their contributions to genomics and bioinformatics development in Nigeria. A total of 100 travel fellowships were awarded to delegates within Nigeria. A major topic of discussion was the application of bioinformatics and genomics in the achievement of the Sustainable Development Goals (SDG3-Good Health and Well-Being, SDG4-Quality Education, and SDG 15-Life on Land [Biodiversity]). In closing, most of the NBGN21 conference participants were interviewed and interestingly they agreed that bioinformatics and genomic analysis of African genomes are vital in identifying population-specific genetic variants that confer susceptibility to different diseases that are endemic in Africa. The knowledge of this can empower African healthcare systems and governments for timely intervention, thereby enhancing good health and well-being.

7.
Nat Med ; 28(6): 1163-1166, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654908

RESUMO

The poor transferability of genetic risk scores (GRSs) derived from European ancestry data in diverse populations is a cause of concern. We set out to evaluate whether GRSs derived from data of African American individuals and multiancestry data perform better in sub-Saharan Africa (SSA) compared to European ancestry-derived scores. Using summary statistics from the Million Veteran Program (MVP), we showed that GRSs derived from data of African American individuals enhance polygenic prediction of lipid traits in SSA compared to European and multiancestry scores. However, our GRS prediction varied greatly within SSA between the South African Zulu (low-density lipoprotein cholesterol (LDL-C), R2 = 8.14%) and Ugandan cohorts (LDL-C, R2 = 0.026%). We postulate that differences in the genetic and environmental factors between these population groups might lead to the poor transferability of GRSs within SSA. More effort is required to optimize polygenic prediction in Africa.


Assuntos
Estudo de Associação Genômica Ampla , Grupos Populacionais , População Negra/genética , LDL-Colesterol/genética , Humanos , Fatores de Risco
8.
EBioMedicine ; 78: 103953, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35325778

RESUMO

BACKGROUND: Dyslipidaemia is highly prevalent in individuals with type 2 diabetes mellitus (T2DM). Numerous studies have sought to disentangle the causal relationship between dyslipidaemia and T2DM liability. However, conventional observational studies are vulnerable to confounding. Mendelian Randomization (MR) studies (which address this bias) on lipids and T2DM liability have focused on European ancestry individuals, with none to date having been performed in individuals of African ancestry. We therefore sought to use MR to investigate the causal effect of various lipid traits on T2DM liability in African ancestry individuals. METHODS: Using univariable and multivariable two-sample MR, we leveraged summary-level data for lipid traits and T2DM liability from the African Partnership for Chronic Disease Research (APCDR) (N = 13,612, 36.9% men) and from African ancestry individuals in the Million Veteran Program (Ncases = 23,305 and Ncontrols = 30,140, 87.2% men), respectively. Genetic instruments were thus selected from the APCDR after which they were clumped to obtain independent instruments. We used a random-effects inverse variance weighted method in our primary analysis, complementing this with additional sensitivity analyses robust to the presence of pleiotropy. FINDINGS: Increased genetically proxied low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels were associated with increased T2DM liability in African ancestry individuals (odds ratio (OR) [95% confidence interval, P-value] per standard deviation (SD) increase in LDL-C = 1.052 [1.000 to 1.106, P = 0.046] and per SD increase in TC = 1.089 [1.014 to 1.170, P = 0.019]). Conversely, increased genetically proxied high-density lipoprotein cholesterol (HDL-C) was associated with reduced T2DM liability (OR per SD increase in HDL-C = 0.915 [0.843 to 0.993, P = 0.033]). The OR on T2DM per SD increase in genetically proxied triglyceride (TG) levels was 0.884 [0.773 to 1.011, P = 0.072] . With respect to lipid-lowering drug targets, we found that genetically proxied 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibition was associated with increased T2DM liability (OR per SD decrease in genetically proxied LDL-C = 1.68 [1.03-2.72, P = 0.04]) but we did not find evidence of a relationship between genetically proxied proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and T2DM liability. INTERPRETATION: Consistent with MR findings in Europeans, HDL-C exerts a protective effect on T2DM liability and HMGCR inhibition increases T2DM liability in African ancestry individuals. However, in contrast to European ancestry individuals, LDL-C may increase T2DM liability in African ancestry individuals. This raises the possibility of ethnic differences in the metabolic effects of dyslipidaemia in T2DM. FUNDING: See the Acknowledgements section for more information.


Assuntos
Diabetes Mellitus Tipo 2 , Pró-Proteína Convertase 9 , HDL-Colesterol/genética , LDL-Colesterol/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertase 9/genética , Fatores de Risco
9.
Vaccine ; 37(1): 113-122, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30459072

RESUMO

Evaluation of antigen-specific T-cell responses to viral antigens is frequently performed on IFN-γ secreting cells. However, T-cells are capable of producing many more functions than just IFN-γ, some of which, like Perforin, are associated with immune protection in HIV-1 disease elite controllers. We evaluated the extent of missed T-cell functions when IFN-γ secretion is used as a surrogate marker for further evaluation of T-cell functions. Intracellular cytokine staining assay and flow cytometry were used to assess peripheral blood mononuclear cells (PBMCs) from 31 HIV-infected ART-naive individuals for the extent to which gated CD4+ and CD8+ IFN-γ producing and non-producing T-cells also secreted IL-2, Perforin, and TNF-α functions. Similarly, the extent of missed virus-specific responses in IFN-γ ELISpot assay negative T-cells from 5 HIV-1 uninfected individuals was evaluated. Cells from HIV-infected individuals were stimulated with pooled consensus group M (Con M) peptides; and those from healthy individuals were stimulated with pooled adenovirus (Ad) peptides. Overall, frequencies of virus-specific IFN-γ secreting CD4+ and CD8+ cells were low. Proportions of IFN-γ negative CD4+ expressing IL-2, Perforin, or TNF-α to Con M were significantly higher (5 of 7 functional profiles) than the corresponding IFN-γ positive CD4+ (0 of 7) T-cell phenotype, p = 0.02; Fisher's Exact test. Likewise, proportions of CD8+ T-cells expressing other functions were significantly higher in 4 of the 7 IFN-γ negative CD8+ T-cells. Notably, newly stimulated Perforin, identified as Perforin co-expression with IL-2 or TNF-α, was significantly higher in IFN-γ negative CD8+ T-cell than in the positive CD8+ T-cells. Using SEB, lower responses in IFN-γ positive cells were most associated with CD4+ than CD8+ T-cells. These findings suggest that studies evaluating immunogenicity in response to HIV and Adenovirus viral antigens should not only evaluate T-cell responsiveness among IFN-γ producing cells but also among those T-cells that do not express IFN-γ.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Fatores Imunológicos/imunologia , Interferon gama/imunologia , Adenoviridae , Estudos de Coortes , Estudos Transversais , ELISPOT , Citometria de Fluxo , Infecções por HIV/imunologia , HIV-1 , Humanos , Interleucina-2/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Peptídeos/imunologia , Perforina/imunologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa