Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genome Res ; 33(8): 1258-1268, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37699658

RESUMO

Three-dimensional (3D) chromatin structure has been shown to play a role in regulating gene transcription during biological transitions. Although our understanding of loop formation and maintenance is rapidly improving, much less is known about the mechanisms driving changes in looping and the impact of differential looping on gene transcription. One limitation has been a lack of well-powered differential looping data sets. To address this, we conducted a deeply sequenced Hi-C time course of megakaryocyte development comprising four biological replicates and 6 billion reads per time point. Statistical analysis revealed 1503 differential loops. Gained loop anchors were enriched for AP-1 occupancy and were characterized by large increases in histone H3K27ac (over 11-fold) but relatively small increases in CTCF and RAD21 binding (1.26- and 1.23-fold, respectively). Linear modeling revealed that changes in histone H3K27ac, chromatin accessibility, and JUN binding were better correlated with changes in looping than RAD21 and almost as well correlated as CTCF. Changes to epigenetic features between-rather than at-boundaries were highly predictive of changes in looping. Together these data suggest that although CTCF and RAD21 may be the core machinery dictating where loops form, other features (both at the anchors and within the loop boundaries) may play a larger role than previously anticipated in determining the relative loop strength across cell types and conditions.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Diferenciação Celular/genética
2.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38814811

RESUMO

MOTIVATION: 3D chromatin structure plays an important role in regulating gene expression and alterations to this structure can result in developmental abnormalities and disease. While genomic approaches like Hi-C and Micro-C can provide valuable insights in 3D chromatin architecture, the resulting datasets are extremely large and difficult to manipulate. RESULTS: Here, we present mariner, a rapid and memory efficient tool to extract, aggregate, and plot data from Hi-C matrices within the R/Bioconductor environment. Mariner simplifies the process of querying and extracting contacts from multiple Hi-C files using a parallel and block-processing approach. Modular functions allow complete workflow customization for advanced users, yet all-in-one functions are available for running the most common types of analyses. Finally, tight integration with existing Bioconductor infrastructure enables complete analysis and visualization of Hi-C data in R. AVAILABILITY AND IMPLEMENTATION: Available on GitHub at https://github.com/EricSDavis/mariner and on Bioconductor at https://www.bioconductor.org/packages/release/bioc/html/mariner.html.


Assuntos
Cromatina , Software , Cromatina/metabolismo , Cromatina/química , Genômica/métodos , Humanos , Biologia Computacional/métodos
3.
RNA Biol ; 20(1): 563-572, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543950

RESUMO

Recent reports show that long non-coding RNAs (lncRNAs) have inefficient splicing and fewer alternative splice variants than mRNAs. Here, we have explored the efficiency of lncRNAs and mRNAs in producing various splice variants, given the number of exons in humans and mice. Intriguingly, lncRNAs produce more splice variants per exon, referred to as Transcript Complexity, than mRNAs. Most lncRNA splice variants are the product of the alternative last exon and exon skipping. LncRNAs and mRNAs with higher transcript complexity have shorter intron lengths. Longer exon length and GC/AG at 5'/3' splice sites are associated with higher transcript complexity in lncRNAs. Lastly, our results indicate that inefficient splicing of lncRNAs may facilitate multiple introns splicing and, thus, more spliced products per exon.


Assuntos
Processamento Alternativo , RNA Longo não Codificante , RNA Mensageiro , Transcriptoma , Humanos , Animais , Camundongos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Éxons , Íntrons , Sítios de Splice de RNA
4.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207555

RESUMO

Transplant glomerulopathy develops through multiple mechanisms, including donor-specific antibodies, T cells and innate immunity. This study investigates circulating small RNA profiles in serum samples of kidney transplant recipients with biopsy-proven transplant glomerulopathy. Among total small RNA population, miRNAs were the most abundant species in the serum of kidney transplant patients. In addition, fragments arising from mature tRNA and rRNA were detected. Most of the tRNA fragments were generated from 5' ends of mature tRNA and mainly from two parental tRNAs: tRNA-Gly and tRNA-Glu. Moreover, transplant patients with transplant glomerulopathy displayed a novel tRNA fragments signature. Gene expression analysis from allograft tissues demonstrated changes in canonical pathways related to immune activation such as iCos-iCosL signaling pathway in T helper cells, Th1 and Th2 activation pathway, and dendritic cell maturation. mRNA targets of down-regulated miRNAs such as miR-1224-5p, miR-4508, miR-320, miR-378a from serum were globally upregulated in tissue. Integration of serum miRNA profiles with tissue gene expression showed that changes in serum miRNAs support the role of T-cell mediated mechanisms in ongoing allograft injury.


Assuntos
Ácidos Nucleicos Livres/sangue , Rejeição de Enxerto/sangue , Nefropatias/sangue , Transplante de Rim , MicroRNAs/sangue , RNA de Transferência de Glicina/sangue , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Th1/metabolismo , Células Th2/metabolismo
5.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065421

RESUMO

Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Isquemia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Sirolimo/farmacologia , Injúria Renal Aguda/metabolismo , Transferência Adotiva/métodos , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Isquemia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
RNA ; 24(8): 1093-1105, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844106

RESUMO

tRNA related RNA fragments (tRFs), also known as tRNA-derived RNAs (tdRNAs), are abundant small RNAs reported to be associated with Argonaute proteins, yet their function is unclear. We show that endogenous 18 nucleotide tRFs derived from the 3' ends of tRNAs (tRF-3) post-transcriptionally repress genes in HEK293T cells in culture. tRF-3 levels increase upon parental tRNA overexpression. This represses target genes with a sequence complementary to the tRF-3 in the 3' UTR. The tRF-3-mediated repression is Dicer-independent, Argonaute-dependent, and the targets are recognized by sequence complementarity. Furthermore, tRF-3:target mRNA pairs in the RNA induced silencing complex associate with GW182 proteins, known to repress translation and promote the degradation of target mRNAs. RNA-seq demonstrates that endogenous target genes are specifically decreased upon tRF-3 induction. Therefore, Dicer-independent tRF-3s, generated upon tRNA overexpression, repress genes post-transcriptionally through an Argonaute-GW182 containing RISC via sequence matches with target mRNAs.


Assuntos
Proteínas Argonautas/genética , Autoantígenos/metabolismo , RNA Helicases DEAD-box/genética , Fatores de Iniciação em Eucariotos/genética , Regulação da Expressão Gênica/genética , RNA de Transferência/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Linhagem Celular , Células HEK293 , Humanos , Processamento de Proteína Pós-Traducional/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
7.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992741

RESUMO

Exosomes, considered as cell debris or garbage bags, have been later characterized as nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation differ in different pathophysiological conditions. Exosomes are also observed and studied in different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated and downregulated, respectively in RB, have the maximum number of targets. Although oppositely regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Retina/metabolismo , Neoplasias da Retina , Retinoblastoma , Linhagem Celular , Neoplasias Oculares/diagnóstico , Neoplasias Oculares/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Retina/patologia , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/metabolismo , Retinoblastoma/diagnóstico , Retinoblastoma/metabolismo
8.
J Cell Biochem ; 115(3): 566-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24130151

RESUMO

Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients.


Assuntos
Códon sem Sentido/genética , Mutação INDEL/genética , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Alelos , Povo Asiático/genética , Análise Mutacional de DNA , Feminino , Humanos , Índia , Masculino , Linhagem , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/etiologia , Fenilcetonúrias/patologia , Sítios de Splice de RNA/genética
9.
MethodsX ; 12: 102697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638454

RESUMO

The findings based on whole transcriptome sequencing suggest that alternative splicing occurs in approximately 95% of human multi-exon genes, thus, playing a crucial role in promoting proteome diversity. According to the latest GENCODE annotations, most genes have less than four transcripts, positively correlating with the number of exons. Thus, it is more accurate to measure the splice variant efficiency of a gene with respect to the number of exons, which is a measure of Transcript Complexity (TC). In addition to that, the theoretical number of transcripts is substantially higher than the actual number of transcripts produced by Alternative Splicing Events, and the features restricting this phenomenon need to be explored. In this method, we have extracted the data of various features contributing to TC from different databases. Linear regression is used to identify the determinant features and to train and test the model of TC. The results indicate that exon length is the determining feature of TC, followed by coding potential, presence of chromatin signature, and 5' splice site dinucleotide, all of which negatively affect a gene's TC, except exon length. To further classify the genes based on TC, random forest is used to identify the determinant features.•The splicing efficiency of a gene can be inferred by the transcript complexity, which is the number of transcripts per exon.•CaTCH is a linear regression-based model to calculate the transcript complexity of human genes, which can be calculated from the exon length, coding potentiality, presence of chromatin signature/s, and 5' splice site dinucleotide.

10.
J Proteome Res ; 12(12): 5436-46, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24050456

RESUMO

In this study, we have constructed tissue-specific protein-protein interaction networks for 70 human tissues and have identified three types of hubs based on their expression breadths: (a) tissue-specific hubs (TSHs) (proteins that are expressed in ≤ 10 tissues and also form hubs in ≤ 10 tissues), (b) tissue-preferred hubs (TPHs) (proteins expressed in ≥ 60 tissues but are highly connected in ≤ 10 tissues), and (c) housekeeping hubs (HKHs) (proteins that are expressed in ≥ 60 tissues and also form hubs in ≥ 60 tissues). Comparative analyses revealed significant differences between TSHs and HKHs and also revealed that TPHs behave more like HKHs. TSHs are lengthier, more disordered, and also quickly evolving proteins as compared with HKHs. Despite having a similar number of binding surfaces and interacting domains, TSHs are associated with a lower degree of centrality as compared with HKHs, suggesting that TSHs are "unsaturated" with regard to their binding capability and are perhaps evolving with regard to their interactions. TSHs are less abundantly expressed as compared with HKHs and are enriched with PEST motifs, indicating their tight regulation. All of these properties of TSHs and HKHs correlate with their distinct functional roles; TSHs are involved in tissue-specific functional roles, viz., secretors, receptors, and signaling proteins, whereas HKHs are involved in core-cellular functions such as transcription, translation, and so on. Our study, therefore, brings forth a clear and distinct classification of hubs simply based on their expression breadth and further assumes significance in the light of the highly debated dichotomy of date and party hubs, which is based on the coexpression pattern of hubs with their partners.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Genes Essenciais , Mapeamento de Interação de Proteínas/métodos , Sítios de Ligação , Bases de Dados Genéticas , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Ligação Proteica , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Comput Biol Chem ; 102: 107802, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603332

RESUMO

Analysis of degree centrality in conjunction with betweenness centrality of proteins in a human protein-protein interaction network revealed three categories of centrally important proteins: a) proteins with high degree and betweenness (hub-bottlenecks denoted as MX), b) proteins with high betweenness and low degree (non-hub-bottlenecks/pure bottlenecks denoted as PB) and c) proteins with high degree and low betweenness (hub-non-bottlenecks/pure hubs denoted as PH). When subjected to a detailed statistical analysis of their molecular-level properties, the proteins belonging to each of these categories were found to be associated with distinct canonical molecular properties, i.e., "molecular markers". The MX proteins are a) conformationally versatile, mainly comprising of essential proteins, b) the targets for interactions by the proteins of viral and bacterial pathogens, c) evolutionally constrained, involved in multiple pathways, enriched with disease genes and d) involved in the functions such as protein stabilization, phosphorylation, and mRNA slicing processes. PB proteins are a) enriched with extracellular and cancer-related proteins, b) enriched with the approved drug targets and c) involved in cell-cell signaling processes. Finally, PH are a) structurally versatile, b) enriched with essential proteins primarily involved in housekeeping processes (transcription and replication). The fact that the proteins belonging to these three categories form three distinct sets in terms of their molecular properties reveals the existence of trichotomy among hubs and bottlenecks, and this knowledge is of paramount importance while prioritizing protein targets for further studies such as drug design and disease association studies based on their network centrality values.


Assuntos
Mapas de Interação de Proteínas , Proteínas , Humanos
12.
Front Oncol ; 10: 740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656073

RESUMO

SIRT7 belongs to the family of "NAD+ dependent deacetylases" called Sirtuins. In the present work we report a novel role of SIRT7 in regulating cellular polarity. SIRT7 overexpression in immortalized mouse fibroblasts (NIH3T3) induced epithelial transition. This transition was accompanied by typical N- to E- cadherin transition, stabilization of ß-catenin, and the downregulation of transcription factors responsible for maintenance of mesenchymal phenotype (Snail, Slug, and Zeb1). Interestingly, a subpopulation of cells overexpressing SIRT7 exhibited an intermediate stage between mesenchymal and epithelial characters. Transformed epithelial cells showed a loss of heterochromatisation as evidenced by a loss of HP1α and H3K9 dimethylation staining. In conclusion, we report a role of SIRT7 in mesenchymal cells, which may have implications for health and disease.

13.
Cancer Res ; 80(5): 950-963, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31900260

RESUMO

DRAIC is a 1.7 kb spliced long noncoding RNA downregulated in castration-resistant advanced prostate cancer. Decreased DRAIC expression predicts poor patient outcome in prostate and seven other cancers, while increased DRAIC represses growth of xenografted tumors. Here, we show that cancers with decreased DRAIC expression have increased NF-κB target gene expression. DRAIC downregulation increased cell invasion and soft agar colony formation; this was dependent on NF-κB activation. DRAIC interacted with subunits of the IκB kinase (IKK) complex to inhibit their interaction with each other, the phosphorylation of IκBα, and the activation of NF-κB. These functions of DRAIC mapped to the same fragment containing bases 701-905. Thus, DRAIC lncRNA inhibits prostate cancer progression through suppression of NF-κB activation by interfering with IKK activity. SIGNIFICANCE: A cytoplasmic tumor-suppressive lncRNA interacts with and inhibits a major kinase that activates an oncogenic transcription factor in prostate cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/5/950/F1.large.jpg.


Assuntos
Regulação Neoplásica da Expressão Gênica , Quinase I-kappa B/genética , NF-kappa B/metabolismo , Neoplasias da Próstata/genética , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Masculino , Camundongos , Fosforilação/genética , Próstata/patologia , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Genome Med ; 12(1): 15, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066500

RESUMO

BACKGROUND: While clinical factors such as age, grade, stage, and histological subtype provide physicians with information about patient prognosis, genomic data can further improve these predictions. Previous studies have shown that germline variants in known cancer driver genes are predictive of patient outcome, but no study has systematically analyzed multiple cancers in an unbiased way to identify genetic loci that can improve patient outcome predictions made using clinical factors. METHODS: We analyzed sequencing data from the over 10,000 cancer patients available through The Cancer Genome Atlas to identify germline variants associated with patient outcome using multivariate Cox regression models. RESULTS: We identified 79 prognostic germline variants in individual cancers and 112 prognostic germline variants in groups of cancers. The germline variants identified in individual cancers provide additional predictive power about patient outcomes beyond clinical information currently in use and may therefore augment clinical decisions based on expected tumor aggressiveness. Molecularly, at least 12 of the germline variants are likely associated with patient outcome through perturbation of protein structure and at least five through association with gene expression differences. Almost half of these germline variants are in previously reported tumor suppressors, oncogenes or cancer driver genes with the other half pointing to genomic loci that should be further investigated for their roles in cancers. CONCLUSIONS: Germline variants are predictive of outcome in cancer patients and specific germline variants can improve patient outcome predictions beyond predictions made using clinical factors alone. The germline variants also implicate new means by which known oncogenes, tumor suppressor genes, and driver genes are perturbed in cancer and suggest roles in cancer for other genes that have not been extensively studied in oncology. Further studies in other cancer cohorts are necessary to confirm that germline variation is associated with outcome in cancer patients as this is a proof-of-principle study.


Assuntos
Biomarcadores Tumorais/genética , Mutação em Linhagem Germinativa , Neoplasias/genética , Testes Genéticos/estatística & dados numéricos , Humanos , Neoplasias/patologia , Proteínas Oncogênicas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Proteínas Supressoras de Tumor/genética
15.
Mol Cancer Res ; 17(5): 1075-1086, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30651372

RESUMO

Lower grade gliomas are invasive brain tumors that are difficult to completely resect neurosurgically. They often recur following resection and progress, resulting in death. Although previous studies have shown that specific germline variants increase the risk of tumor formation, no previous study has screened many germline variants to identify variants predictive of survival in patients with glioma. In this study, we present an approach to identify the small fraction of prognostic germline variants from the pool of over four million variants that we variant called in The Cancer Genome Atlas whole-exome sequencing and RNA sequencing datasets. We identified two germline variants that are predictive of poor patient outcomes by Cox regression, controlling for eleven covariates. rs61757955 is a germline variant found in the 3' UTR of GRB2 associated with increased KRAS signaling, CIC mutations, and 1p/19q codeletion. rs34988193 is a germline variant found in the tumor suppressor gene ANKDD1a that causes an amino acid change from lysine to glutamate. This variant was found to be predictive of poor prognosis in two independent lower grade glioma datasets and is predicted to be within the top 0.06% of deleterious mutations across the human genome. The wild-type residue is conserved in all 22 other species with a homologous protein. IMPLICATIONS: This is the first study presenting an approach to screening many germline variants to identify variants predictive of survival and our application of this methodology revealed the germline variants rs61757955 and rs34988193 as being predictive of survival in patients with lower grade glioma.


Assuntos
Neoplasias Encefálicas/patologia , Proteína Adaptadora GRB2/genética , Mutação em Linhagem Germinativa , Glioma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Feminino , Glioma/genética , Glioma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Polimorfismo de Nucleotídeo Único , Prognóstico , Análise de Sequência de RNA , Análise de Sobrevida , Sequenciamento do Exoma , Adulto Jovem
16.
Mol Neurobiol ; 56(7): 4786-4798, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30392137

RESUMO

Diffuse low-grade and intermediate-grade gliomas (together known as lower grade gliomas, WHO grade II and III) develop in the supporting glial cells of brain and are the most common types of primary brain tumor. Despite a better prognosis for lower grade gliomas, 70% of patients undergo high-grade transformation within 10 years, stressing the importance of better prognosis. Long non-coding RNAs (lncRNAs) are gaining attention as potential biomarkers for cancer diagnosis and prognosis. We have developed a computational model, UVA8, for prognosis of lower grade gliomas by combining lncRNA expression, Cox regression, and L1-LASSO penalization. The model was trained on a subset of patients in TCGA. Patients in TCGA, as well as a completely independent validation set (CGGA) could be dichotomized based on their risk score, a linear combination of the level of each prognostic lncRNA weighted by its multivariable Cox regression coefficient. UVA8 is an independent predictor of survival and outperforms standard epidemiological approaches and previous published lncRNA-based predictors as a survival model. Guilt-by-association studies of the lncRNAs in UVA8, all of which predict good outcome, suggest they have a role in suppressing interferon-stimulated response and epithelial to mesenchymal transition. The expression levels of eight lncRNAs can be combined to produce a prognostic tool applicable to diverse populations of glioma patients. The 8 lncRNA (UVA8) based score can identify grade II and grade III glioma patients with poor outcome, and thus identify patients who should receive more aggressive therapy at the outset.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , RNA Longo não Codificante/genética , Humanos , Interferons/metabolismo , Estimativa de Kaplan-Meier , Gradação de Tumores , Prognóstico , RNA Longo não Codificante/metabolismo , Fatores de Risco , Transdução de Sinais
17.
Mol Cancer Res ; 16(10): 1470-1482, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991527

RESUMO

Long noncoding RNAs (lncRNA) are increasingly implicated in oncogenesis. Here, it is determined that LINC00152/CYTOR is upregulated in glioblastoma multiforme (GBM) and aggressive wild-type IDH1/2 grade 2/3 gliomas and upregulation associates with poor patient outcomes. LINC00152 is similarly upregulated in over 10 other cancer types and associates with a poor prognosis in 7 other cancer types. Inhibition of the mostly cytoplasmic LINC00152 decreases, and overexpression increases cellular invasion. LINC00152 knockdown alters the transcription of genes important to epithelial-to-mesenchymal transition (EMT). PARIS and Ribo-seq data, together with secondary structure prediction, identified a protein-bound 121-bp stem-loop structure at the 3' end of LINC00152 whose overexpression is sufficient to increase invasion of GBM cells. Point mutations in the stem-loop suggest that stem formation in the hairpin is essential for LINC00152 function. LINC00152 has a nearly identical homolog, MIR4435-2HG, which encodes a near identical hairpin, is equally expressed in low-grade glioma (LGG) and GBM, predicts poor patient survival in these tumors, and is also reduced by LINC00152 knockdown. Together, these data reveal that LINC00152 and its homolog MIR4435-2HG associate with aggressive tumors and promote cellular invasion through a mechanism that requires the structural integrity of a hairpin structure.Implications: Frequent upregulation of the lncRNA, LINC00152, in glioblastoma and other tumor types combined with its prognostic potential and ability to promote invasion suggests LINC00152 as a potential biomarker and therapeutic target. Mol Cancer Res; 16(10); 1470-82. ©2018 AACR.


Assuntos
Carcinogênese/genética , Glioblastoma/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Conformação de Ácido Nucleico , Prognóstico
18.
Mol Cell Biol ; 38(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30037979

RESUMO

MyoD upstream noncoding RNA (MUNC) initiates in the distal regulatory region (DRR) enhancer of MYOD and is formally classified as an enhancer RNA (DRReRNA). MUNC is required for optimal myogenic differentiation, induces specific myogenic transcripts in trans (MYOD, MYOGENIN, and MYH3), and has a functional human homolog. The vast majority of eRNAs are believed to act in cis primarily on their neighboring genes (1, 2), making it likely that MUNC action is dependent on the induction of MYOD RNA. Surprisingly, MUNC overexpression in MYOD-/- C2C12 cells induces many myogenic transcripts in the complete absence of MyoD protein. Genomewide analysis showed that, while many genes are regulated by MUNC in a MyoD-dependent manner, there is a set of genes that are regulated by MUNC, both upward and downward, independently of MyoD. MUNC and MyoD even appear to act antagonistically on certain transcripts. Deletion mutagenesis showed that there are at least two independent functional sites on the MUNC long noncoding RNA (lncRNA), with exon 1 more active than exon 2 and with very little activity from the intron. Thus, although MUNC is an eRNA of MYOD, it is also a trans-acting lncRNA whose sequence, structure, and cooperating factors, which include but are not limited to MyoD, determine the regulation of many myogenic genes.


Assuntos
Desenvolvimento Muscular/genética , Proteína MyoD/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Humanos , Camundongos , Modelos Biológicos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteína MyoD/antagonistas & inibidores , Proteína MyoD/metabolismo , Miogenina/biossíntese , Miogenina/genética , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , RNA Longo não Codificante/química
19.
Elife ; 52016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906128

RESUMO

The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1. The ORC1 or ORC2-depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication.


Assuntos
Replicação do DNA , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Proteínas de Ciclo Celular , Linhagem Celular , DNA/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares , Complexo de Reconhecimento de Origem/genética , Ligação Proteica
20.
Cell Signal ; 27(3): 673-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25435428

RESUMO

Sirtuin 7 is a member of the sirtuin family of proteins. Sirtuins were originally discovered in yeast for its role in prolonging replicative lifespan. Until recently SIRT7 happened to be the least studied sirtuin of the seven mammalian sirtuins. However, a number of recent breakthrough reports have provided significant clarity to SIRT7 biology. SIRT7 is now seen as a vital regulator of rRNA and protein synthesis for maintenance of normal cellular homeostasis. Proteins like p53, H3K18, PAF53, NPM1 and GABP-ß1 are the known substrates for the deacetylase activity of SIRT7, thereby making it a key mediator of many cellular activities. Studies using in vitro based assays and also knockout mice have revealed a role of SIRT7 in certain disease pathologies as well. High expression of SIRT7 has been reported in few cancer types and is steadily propelling SIRT7 towards an oncogene status. The role of SIRT7 as a pro-survival adaptor molecule in conditions of cellular stress has recently emerged in view of the fact that SIRT7 can regulate molecules like HIF and IRE1α. Additionally, SIRT7 plays a key role in maintenance of the epigenome as it caused the deacetylation of histone (H3K18) and global proteomics studies have shown its interaction with many chromatin remodelling complexes such as B-WICH and other proteins. Lately, the role of SIRT7 in hepatic lipid metabolism has been debated. This review attempts to summarize these recent findings and present the role of SIRT7 as an important cellular regulator.


Assuntos
Sirtuínas/metabolismo , Envelhecimento , Animais , Proliferação de Células , Montagem e Desmontagem da Cromatina , DNA Ribossômico/metabolismo , Endorribonucleases/metabolismo , Histonas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Nucleofosmina , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa