Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Chem Biol ; 19(5): 624-632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36797403

RESUMO

The nucleosome acidic patch is a major interaction hub for chromatin, providing a platform for enzymes to dock and orient for nucleosome-targeted activities. To define the molecular basis of acidic patch recognition proteome wide, we performed an amino acid resolution acidic patch interactome screen. We discovered that the histone H3 lysine 36 (H3K36) demethylase KDM2A, but not its closely related paralog, KDM2B, requires the acidic patch for nucleosome binding. Despite fundamental roles in transcriptional repression in health and disease, the molecular mechanisms governing nucleosome substrate specificity of KDM2A/B, or any related JumonjiC (JmjC) domain lysine demethylase, remain unclear. We used a covalent conjugate between H3K36 and a demethylase inhibitor to solve cryogenic electron microscopy structures of KDM2A and KDM2B trapped in action on a nucleosome substrate. Our structures show that KDM2-nucleosome binding is paralog specific and facilitated by dynamic nucleosomal DNA unwrapping and histone charge shielding that mobilize the H3K36 sequence for demethylation.


Assuntos
Lisina , Nucleossomos , Histonas/metabolismo , Cromatina , Histona Desmetilases com o Domínio Jumonji/química
2.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
3.
Nucleic Acids Res ; 50(8): 4355-4371, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390161

RESUMO

A key role of chromatin kinases is to phosphorylate histone tails during mitosis to spatiotemporally regulate cell division. Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase that phosphorylates histone H3 threonine 3 (H3T3) along with other chromatin-based targets. While structural studies have defined how several classes of histone-modifying enzymes bind to and function on nucleosomes, the mechanism of chromatin engagement by kinases is largely unclear. Here, we paired cryo-electron microscopy with biochemical and cellular assays to demonstrate that VRK1 interacts with both linker DNA and the nucleosome acidic patch to phosphorylate H3T3. Acidic patch binding by VRK1 is mediated by an arginine-rich flexible C-terminal tail. Homozygous missense and nonsense mutations of this acidic patch recognition motif in VRK1 are causative in rare adult-onset distal spinal muscular atrophy. We show that these VRK1 mutations interfere with nucleosome acidic patch binding, leading to mislocalization of VRK1 during mitosis, thus providing a potential new molecular mechanism for pathogenesis.


Assuntos
Histonas , Nucleossomos , Cromatina/genética , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Proteínas Serina-Treonina Quinases , Treonina/metabolismo
4.
Genes Dev ; 27(11): 1288-98, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752590

RESUMO

Histone post-translational modifications regulate chromatin structure and function largely through interactions with effector proteins that often contain multiple histone-binding domains. While significant progress has been made characterizing individual effector domains, the role of paired domains and how they function in a combinatorial fashion within chromatin are poorly defined. Here we show that the linked tandem Tudor and plant homeodomain (PHD) of UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1) operates as a functional unit in cells, providing a defined combinatorial readout of a heterochromatin signature within a single histone H3 tail that is essential for UHRF1-directed epigenetic inheritance of DNA methylation. These findings provide critical support for the "histone code" hypothesis, demonstrating that multivalent histone engagement plays a key role in driving a fundamental downstream biological event in chromatin.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA/genética , Epigênese Genética , Histonas/metabolismo , Proteínas de Homeodomínio/química , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases
5.
Bioorg Med Chem Lett ; 30(19): 127464, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768646

RESUMO

Two critical steps in drug development are 1) the discovery of molecules that have the desired effects on a target, and 2) the optimization of such molecules into lead compounds with the required potency and pharmacokinetic properties for translation. DNA-encoded chemical libraries (DECLs) can nowadays yield hits with unprecedented ease, and lead-optimization is becoming the limiting step. Here we integrate DECL screening with structure-based computational methods to streamline the development of lead compounds. The presented workflow consists of enumerating a virtual combinatorial library (VCL) derived from a DECL screening hit and using computational binding prediction to identify molecules with enhanced properties relative to the original DECL hit. As proof-of-concept demonstration, we applied this approach to identify an inhibitor of PARP10 that is more potent and druglike than the original DECL screening hit.


Assuntos
DNA/química , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Técnicas de Química Combinatória , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ensaios Enzimáticos , Humanos , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/metabolismo , Estudo de Prova de Conceito , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo
6.
J Chem Inf Model ; 60(1): 152-161, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31790251

RESUMO

While accurate quantitative prediction of ligand-protein binding affinity remains an elusive goal, high-affinity ligands to therapeutic targets are being designed through heuristic optimization of ligand-protein contacts. However, herein, through large-scale data mining and analyses, we demonstrate that a ligand's binding can also be strongly affected through modifying its solvent-exposed portion that does not make contacts with the protein, thus resulting in "off-pocket activity cliffs" (OAC). We then exposed the roots of the OAC phenomenon by means of molecular dynamics (MD) simulations and MD data analyses. We expect OAC to extend our knowledge of molecular recognition and enhance the drug designer's toolkit.


Assuntos
Proteínas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas/química , Solventes/química
7.
Molecules ; 25(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098353

RESUMO

Chromatin structure and function, and consequently cellular phenotype, is regulated in part by a network of chromatin-modifying enzymes that place post-translational modifications (PTMs) on histone tails. These marks serve as recruitment sites for other chromatin regulatory complexes that 'read' these PTMs. High-quality chemical probes that can block reader functions of proteins involved in chromatin regulation are important tools to improve our understanding of pathways involved in chromatin dynamics. Insight into the intricate system of chromatin PTMs and their context within the epigenome is also therapeutically important as misregulation of this complex system is implicated in numerous human diseases. Using computational methods, along with structure-based knowledge, we have designed and constructed a focused DNA-Encoded Library (DEL) containing approximately 60,000 compounds targeting bi-valent methyl-lysine (Kme) reader domains. Additionally, we have constructed DNA-barcoded control compounds to allow optimization of selection conditions using a model Kme reader domain. We anticipate that this target-class focused approach will serve as a new method for rapid discovery of inhibitors for multivalent chromatin reader domains.


Assuntos
Cromatina/genética , DNA/química , Epigenoma , Processamento de Proteína Pós-Traducional/genética , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , DNA/genética , Biblioteca Gênica , Histonas/genética , Humanos , Lisina/química , Lisina/genética , Ligação Proteica/genética
8.
J Am Chem Soc ; 141(13): 5169-5181, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30855951

RESUMO

DNA-encoded chemical libraries are increasingly used in pharmaceutical research because they enable the rapid discovery of synthetic protein ligands. Here we explored whether target-class focused DNA-encoded chemical libraries can be cost-effective tools to achieve robust screening productivity for a series of proteins. The study revealed that a DNA-encoded library designed for NAD+-binding pockets (NADEL) effectively sampled the chemical binder space of enzymes with ADP-ribosyltransferase activity. The extracted information directed the synthesis of inhibitors for several enzymes including PARP15 and SIRT6. The high dissimilarity of NADEL screening fingerprints for different proteins translated into inhibitors that showed selectivity for their target. The discovery of patterns of enriched structures for six out of eight tested proteins is remarkable for a library of 58 302 DNA-tagged structures and illustrates the prospect of focused DNA-encoded libraries as economic alternatives to large library platforms.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , DNA/química , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Sirtuínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , ADP Ribose Transferases/metabolismo , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Sirtuínas/metabolismo , Bibliotecas de Moléculas Pequenas/química
9.
J Am Chem Soc ; 141(39): 15700-15709, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31497954

RESUMO

Controlling which particular members of a large protein family are targeted by a drug is key to achieving a desired therapeutic response. In this study, we report a rational data-driven strategy for achieving restricted polypharmacology in the design of antitumor agents selectively targeting the TYRO3, AXL, and MERTK (TAM) family tyrosine kinases. Our computational approach, based on the concept of fragments in structural environments (FRASE), distills relevant chemical information from structural and chemogenomic databases to assemble a three-dimensional inhibitor structure directly in the protein pocket. Target engagement by the inhibitors designed led to disruption of oncogenic phenotypes as demonstrated in enzymatic assays and in a panel of cancer cell lines, including acute lymphoblastic and myeloid leukemia (ALL/AML) and nonsmall cell lung cancer (NSCLC). Structural rationale underlying the approach was corroborated by X-ray crystallography. The lead compound demonstrated potent target inhibition in a pharmacodynamic study in leukemic mice.


Assuntos
Antineoplásicos/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais
10.
Biochemistry ; 57(14): 2140-2149, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29558110

RESUMO

Multivalent binding is an efficient means to enhance the affinity and specificity of chemical probes targeting multidomain proteins in order to study their function and role in disease. While the theory of multivalent binding is straightforward, physical and structural characterization of bivalent binding encounters multiple technical difficulties. We present a case study where a combination of experimental techniques and computational simulations was used to comprehensively characterize the binding and structure-affinity relationships for a series of Bromosporine-based bivalent bromodomain ligands with a bivalent protein, Transcription Initiation Factor TFIID subunit 1 (TAF1). Experimental techniques-Isothermal Titration Calorimetry, X-ray Crystallography, Circular Dichroism, Size Exclusion Chromatography-Multi-Angle Light Scattering, and Surface Plasmon Resonance-were used to determine structures, binding affinities, and kinetics of monovalent ligands and bivalent ligands with varying linker lengths. The experimental data for monomeric ligands were fed into explicit computational simulations, in which both ligand and protein species were present in a broad range of concentrations, and in up to a 100 s time regime, to match experimental conditions. These simulations provided accurate estimates for apparent affinities (in good agreement with experimental data), individual dissociation microconstants and other microscopic details for each type of protein-ligand complex. We conclude that the expected efficiency of bivalent ligands in a cellular context is difficult to estimate by a single technique in vitro, due to higher order associations favored at the concentrations used, and other complicating processes. Rather, a combination of structural, biophysical, and computational approaches should be utilized to estimate and characterize multivalent interactions.


Assuntos
Histona Acetiltransferases/química , Fatores Associados à Proteína de Ligação a TATA/química , Fator de Transcrição TFIID/química , Calorimetria , Cristalografia por Raios X , Difusão Dinâmica da Luz , Histona Acetiltransferases/metabolismo , Humanos , Sondas Moleculares/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo
12.
Nat Chem Biol ; 9(3): 184-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292653

RESUMO

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


Assuntos
Benzamidas/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Lisina/análogos & derivados , Sondas Moleculares/farmacologia , Piperidinas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Ligação Competitiva/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lisina/antagonistas & inibidores , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estrutura Molecular , Piperidinas/química , Piperidinas/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
13.
Nat Commun ; 15(1): 5564, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956119

RESUMO

Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify since novel therapeutic targets are often hard-to-drug proteins. We introduce FRASE-based hit-finding robot (FRASE-bot), to expedite drug discovery for unconventional therapeutic targets. FRASE-bot mines available 3D structures of ligand-protein complexes to create a database of FRAgments in Structural Environments (FRASE). The FRASE database can be screened to identify structural environments similar to those in the target protein and seed the target structure with relevant ligand fragments. A neural network model is used to retain fragments with the highest likelihood of being native binders. The seeded fragments then inform ultra-large-scale virtual screening of commercially available compounds. We apply FRASE-bot to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising drug target implicated in triple negative breast cancer. FRASE-based virtual screening identifies a small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depletion-insensitive cells.


Assuntos
Antineoplásicos , Proteínas de Ligação ao Cálcio , Descoberta de Drogas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Ligantes , Descoberta de Drogas/métodos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Linhagem Celular Tumoral , Simulação por Computador , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ligação Proteica , Redes Neurais de Computação
14.
J Med Chem ; 67(7): 5866-5882, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38556760

RESUMO

MERTK and AXL are members of the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases that are aberrantly expressed and have been implicated as therapeutic targets in a wide variety of human tumors. Dual MERTK and AXL inhibition could provide antitumor action mediated by both direct tumor cell killing and modulation of the innate immune response in some tumors such as nonsmall cell lung cancer. We utilized our knowledge of MERTK inhibitors and a structure-based drug design approach to discover a novel class of macrocyclic dual MERTK/AXL inhibitors. The lead compound 43 had low-nanomolar activity against both MERTK and AXL and good selectivity over TYRO3 and FLT3. Its target engagement and selectivity were also confirmed by NanoBRET and cell-based MERTK and AXL phosphorylation assays. Compound 43 had excellent pharmacokinetic properties (large AUC and long half-life) and mediated antitumor activity against lung cancer cell lines, indicating its potential as a therapeutic agent.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
16.
Nat Chem Biol ; 7(8): 566-74, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743462

RESUMO

Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Quinazolinas/farmacologia , Animais , Linhagem Celular , Inativação Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Estrutura Molecular
17.
ACS Chem Biol ; 18(1): 166-175, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36490372

RESUMO

mRNA display is a powerful, high-throughput technology for discovering novel, peptide ligands for protein targets. A number of methods have been used to expand the chemical diversity of mRNA display libraries beyond the 20 canonical amino acids, including genetic code reprogramming and biorthogonal chemistries. To date, however, there have been few reports using enzymes as biocompatible reagents for diversifying mRNA display libraries. Here, we report the evaluation and implementation of the common industrial enzyme, microbial transglutaminase (mTG), as a versatile biocatalyst for cyclization of mRNA display peptide libraries via lysine-to-glutamine isopeptide bonds. We establish two separate display-based assays to validate the compatibility of mTG with mRNA-linked peptide substrates. These assays indicate that mTG has a high degree of substrate tolerance and low single round bias. To demonstrate the potential benefits of mTG-mediated cyclization in ligand discovery, high diversity mTG-modified libraries were employed in two separate affinity selections: (1) one against the calcium and integrin binding protein, CIB1, and (2) the second against the immune checkpoint protein and emerging therapeutic target, B7-H3. Both selections resulted in the identification of potent, cyclic, low nanomolar binders, and subsequent structure-activity studies demonstrate the importance of the cyclization to the observed activity. Notably, cyclization in the CIB1 binder stabilizes an α-helical conformation, while the B7-H3 inhibitor employs two bridges, one mTG-derived lactam and a second disulfide to achieve its potency. Together, these results demonstrate potential benefits of enzyme-based biocatalysts in mRNA display ligand selections and establish a framework for employing mTG in mRNA display.


Assuntos
Biblioteca de Peptídeos , Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligantes , Proteínas/metabolismo , Ligação Proteica , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo
18.
PNAS Nexus ; 2(4): pgad062, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020498

RESUMO

Gene regulation plays essential roles in all multicellular organisms, allowing for different specialized tissue types to be generated from a complex genome. Heterochromatin-driven gene repression, associated with a physical compaction of the genome, is a pathway involving core components that are conserved from yeast to human. Posttranslational modification of chromatin is a critical component of gene regulation. Specifically, tri-methylation of the nucleosome component histone 3 at lysine 9 (H3K9me3) is a key feature of this pathway along with the hallmark heterochromatin protein 1 (HP1). Histone methyltransferases are recruited by HP1 to deposit H3K9me3 marks which nucleate and recruit more HP1 in a process that spreads from the targeting site to signal for gene repression. One of the enzymes recruited is SETDB1, a methyltransferase which putatively catalyzes posttranslational methylation marks on H3K9. To better understand the contribution of SETDB1 in heterochromatin formation, we downregulated SETDB1 through knockdown by a dCas9-KRAB system and examined heterochromatin formation in a chromatin in vivo assay (CiA-Oct4). We studied the contribution of SETDB1 to heterochromatin formation kinetics in a developmentally crucial locus, Oct4. Our data demonstrate that SETDB1 reduction led to a delay in both gene silencing and in H3K9me3 accumulation. Importantly, SETDB1 knockdown to a ∼50% level did not stop heterochromatin formation completely. Particle-based Monte Carlo simulations in 3D space with explicit representation of key molecular processes enabled the elucidation of how SETDB1 downregulation affects the individual molecular processes underlying heterochromatin formation.

19.
SLAS Discov ; 28(1): 39-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563789

RESUMO

Mutations in the small GTPase protein KRAS are one of the leading drivers of cancers including lung, pancreatic, and colorectal, as well as a group of developmental disorders termed "Rasopathies". Recent breakthroughs in the development of mutant-specific KRAS inhibitors include the FDA approved drug Lumakras (Sotorasib, AMG510) for KRAS G12C-mutated non-small cell lung cancer (NSCLC), and MRTX1133, a promising clinical candidate for the treatment of KRAS G12D-mutated cancers. However, there are currently no FDA approved inhibitors that target KRAS mutations occurring at non-codon 12 positions. Herein, we focused on the KRAS mutant A146T, found in colorectal cancers, that exhibits a "fast-cycling" nucleotide mechanism as a driver for oncogenic activation. We developed a novel high throughput time-resolved fluorescence resonance energy transfer (TR-FRET) assay that leverages the reduced nucleotide affinity of KRAS A146T. As designed, the assay is capable of detecting small molecules that act to allosterically modulate GDP affinity or directly compete with the bound nucleotide. A pilot screen was completed to demonstrate robust statistics and reproducibility followed by a primary screen using a diversity library totaling over 83,000 compounds. Compounds yielding >50% inhibition of TR-FRET signal were selected as hits for testing in dose-response format. The most promising hit, UNC10104889, was further investigated through a structure activity relationship (SAR)-by-catalog approach in an attempt to improve potency and circumvent solubility liabilities. Overall, we present the TR-FRET platform as a robust assay to screen fast-cycling KRAS mutants enabling future discovery efforts for novel chemical probes and drug candidates.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transferência Ressonante de Energia de Fluorescência , Proteínas Proto-Oncogênicas p21(ras)/genética , Reprodutibilidade dos Testes , Nucleotídeos
20.
Eur J Med Chem ; 246: 114980, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495630

RESUMO

DNA-encoded chemical libraries (DECLs) interrogate the interactions of a target of interest with vast numbers of molecules. DECLs hence provide abundant information about the chemical ligand space for therapeutic targets, and there is considerable interest in methods for exploiting DECL screening data to predict novel ligands. Here we introduce one such approach and demonstrate its feasibility using the cancer-related poly-(ADP-ribose)transferase tankyrase 1 (TNKS1) as a model target. First, DECL affinity selections resulted in structurally diverse TNKS1 inhibitors with high potency including compound 2 with an IC50 value of 0.8 nM. Additionally, TNKS1 hits from four DECLs were translated into pharmacophore models, which were exploited in combination with docking-based screening to identify TNKS1 ligand candidates in databases of commercially available compounds. This computational strategy afforded TNKS1 inhibitors that are outside the chemical space covered by the DECLs and yielded the drug-like lead compound 12 with an IC50 value of 22 nM. The study further provided insights in the reliability of screening data and the effect of library design on hit compounds. In particular, the study revealed that while in general DECL screening data are in good agreement with off-DNA ligand binding, unpredictable interactions of the DNA-attachment linker with the target protein contribute to the noise in the affinity selection data.


Assuntos
Bibliotecas de Moléculas Pequenas , Tanquirases , Bibliotecas de Moléculas Pequenas/química , Farmacóforo , Tanquirases/metabolismo , Ligantes , Reprodutibilidade dos Testes , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa