Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 21(6): 1122-1130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831210

RESUMO

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys. Here, we present a detailed magnetic resonance imaging resource to study structural WM connectivity in the chimpanzee. This open-access resource contains (1) WM reconstructions of a postmortem chimpanzee brain, using the highest-quality diffusion magnetic resonance imaging data yet acquired from great apes; (2) an optimized and validated method for high-quality fiber orientation reconstructions; and (3) major fiber tract segmentations for cross-species morphological comparisons. This dataset enabled us to identify phylogenetically relevant details of the chimpanzee connectome, and we anticipate that it will substantially contribute to understanding human brain evolution.


Assuntos
Encéfalo , Conectoma , Pan troglodytes , Substância Branca , Pan troglodytes/anatomia & histologia , Animais , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Masculino , Vias Neurais/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Feminino , Mapeamento Encefálico/métodos
2.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39046457

RESUMO

Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order. Here, we extended our original study to assess the feasibility of the method to map SAF in higher cortical areas by including SAF up to V3. Our results reproduced the expected retinotopic order of SAF in the V2-V3 and V1-V3 stream, demonstrating greater robustness to the shorter V1-V2 and V2-V3 than the longer V1-V3 connections. The demonstrated ability of the method to map higher-order SAF connectivity patterns in vivo is an important step towards its application across the brain.


Assuntos
Mapeamento Encefálico , Imagem de Tensor de Difusão , Córtex Visual , Vias Visuais , Humanos , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Masculino , Feminino , Adulto , Imagem de Tensor de Difusão/métodos , Mapeamento Encefálico/métodos , Vias Visuais/fisiologia , Vias Visuais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem , Processamento de Imagem Assistida por Computador/métodos
3.
Front Integr Neurosci ; 17: 1299087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260006

RESUMO

To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa