Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 864, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24320546

RESUMO

BACKGROUND: The Miscanthus genus of perennial C4 grasses contains promising biofuel crops for temperate climates. However, few genomic resources exist for Miscanthus, which limits understanding of its interesting biology and future genetic improvement. A comprehensive catalog of expressed sequences were generated from a variety of Miscanthus species and tissue types, with an emphasis on characterizing gene expression changes in spring compared to fall rhizomes. RESULTS: Illumina short read sequencing technology was used to produce transcriptome sequences from different tissues and organs during distinct developmental stages for multiple Miscanthus species, including Miscanthus sinensis, Miscanthus sacchariflorus, and their interspecific hybrid Miscanthus × giganteus. More than fifty billion base-pairs of Miscanthus transcript sequence were produced. Overall, 26,230 Sorghum gene models (i.e., ~ 96% of predicted Sorghum genes) had at least five Miscanthus reads mapped to them, suggesting that a large portion of the Miscanthus transcriptome is represented in this dataset. The Miscanthus × giganteus data was used to identify genes preferentially expressed in a single tissue, such as the spring rhizome, using Sorghum bicolor as a reference. Quantitative real-time PCR was used to verify examples of preferential expression predicted via RNA-Seq. Contiguous consensus transcript sequences were assembled for each species and annotated using InterProScan. Sequences from the assembled transcriptome were used to amplify genomic segments from a doubled haploid Miscanthus sinensis and from Miscanthus × giganteus to further disentangle the allelic and paralogous variations in genes. CONCLUSIONS: This large expressed sequence tag collection creates a valuable resource for the study of Miscanthus biology by providing detailed gene sequence information and tissue preferred expression patterns. We have successfully generated a database of transcriptome assemblies and demonstrated its use in the study of genes of interest. Analysis of gene expression profiles revealed biological pathways that exhibit altered regulation in spring compared to fall rhizomes, which are consistent with their different physiological functions. The expression profiles of the subterranean rhizome provides a better understanding of the biological activities of the underground stem structures that are essentials for perenniality and the storage or remobilization of carbon and nutrient resources.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Poaceae/genética , Rejuvenescimento , Rizoma/genética , Transcriptoma , Análise por Conglomerados , Evolução Molecular , Interação Gene-Ambiente , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Poaceae/classificação , Reprodutibilidade dos Testes , Estações do Ano
2.
BMC Genomics ; 12: 83, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21276248

RESUMO

BACKGROUND: Zinc Finger Nucleases (ZFNs) have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN) method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. DESCRIPTION: ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s). Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence). Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter) "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the effectiveness of a given ZFN in creating double-stranded breaks. CONCLUSIONS: ZFNGenome provides a user-friendly interface that allows researchers to access resources and information regarding genomic target sites for engineered ZFNs in seven model organisms. This genome-wide database of potential ZFN target sites should greatly facilitate the utilization of ZFNs in both basic and clinical research.ZFNGenome is freely available at: http://bindr.gdcb.iastate.edu/ZFNGenome or at the Zinc Finger Consortium website: http://www.zincfingers.org/.


Assuntos
Endonucleases/genética , Dedos de Zinco/genética , Animais , Arabidopsis/enzimologia , Sítios de Ligação/genética , Caenorhabditis elegans/enzimologia , Chlamydomonas reinhardtii/enzimologia , Bases de Dados Genéticas , Drosophila melanogaster/enzimologia , Humanos , Saccharomyces cerevisiae/enzimologia , Software , Sítio de Iniciação de Transcrição , Peixe-Zebra
3.
Zootaxa ; 4545(2): 277-285, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30790901

RESUMO

Two new endemic Hawaiian species of Agrotis Ochsenheimer (Noctuidae) are described: A. helela and A. kuamauna. Both species are day-flying and occur at high-elevations. Observations of adult and larval morphology and biology are included, as well as illustrations of adult moths and genitalia for both sexes.


Assuntos
Mariposas , Animais , Biologia , Feminino , Genitália , Havaí , Larva , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa