Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mov Disord ; 33(1): 165-169, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165837

RESUMO

BACKGROUND: Stimulation parameters in deep brain stimulation (DBS) of the subthalamic nucleus for Parkinson's disease (PD) are rarely tested in double-blind conditions. Evidence-based recommendations on optimal stimulator settings are needed. Results from the CUSTOM-DBS study are reported, comparing 2 pulse durations. METHODS: A total of 15 patients were programmed using a pulse width of 30 µs (test) or 60 µs (control). Efficacy and side-effect thresholds and unified PD rating scale (UPDRS) III were measured in meds-off (primary outcome). The therapeutic window was the difference between patients' efficacy and side effect thresholds. RESULTS: The therapeutic window was significantly larger at 30 µs than 60 µs (P = ·0009) and the efficacy (UPDRS III score) was noninferior (P = .00008). INTERPRETATION: Subthalamic neurostimulation at 30 µs versus 60 µs pulse width is equally effective on PD motor signs, is more energy efficient, and has less likelihood of stimulation-related side effects. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Fenômenos Biofísicos/fisiologia , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Biofísica , Método Duplo-Cego , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo
2.
Neurol Res Pract ; 1: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33324891

RESUMO

BACKGROUND: Programming deep brain stimulation in dystonia is difficult because of the delayed benefits and absence of evidence-based guidelines. Therefore, we evaluated the efficacy of a programming algorithm applied in a double-blind, sham-controlled multicenter study of pallidal deep brain stimulation in dystonia. METHODS: A standardized monopolar review to identify the contact with the best acute antidystonic effect was applied in 40 patients, who were then programmed 0.5 V below the adverse effect threshold and maintained on these settings for at least 3 months, if tolerated. If no acute effects were observed, contact selection was based on adverse effects or anatomical criteria. Three-year follow-up data was available for 31 patients, and five-year data for 32 patients. The efficacy of the algorithm was based on changes in motor scores, adverse events, and the need for reprogramming. RESULTS: The mean (±standard deviation) dystonia motor score decreased by 73 ± 24% at 3 years and 63 ± 38% at 5 years for contacts that exhibited acute improvement of dystonia (n = 17) during the monopolar review. Contacts without acute benefit improved by 58 ± 30% at 3 years (n = 63) and 53 ± 31% at 5 years (n = 59). Interestingly, acute worsening or induction of dystonia/dyskinesia (n = 9) correlated significantly with improvement after 3 years, but not 5 years. CONCLUSIONS: Monopolar review helped to detect the best therapeutic contact in approximately 30% of patients exhibiting acute modulation of dystonic symptoms. Acute improvement, as well as worsening of dystonia, predicted a good long-term outcome, while induction of phosphenes did not correlate with outcome. TRIAL REGISTRATION: ClinicalTrials.gov NCT00142259.

3.
Parkinsonism Relat Disord ; 55: 61-67, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29784559

RESUMO

INTRODUCTION: Stimulation settings of deep brain stimulation (DBS) have evolved empirically within a limited parameter space dictated by first generation devices. There is a need for controlled clinical studies, which evaluate efficacy and safety of established programming practice against novel programming options provided by modern neurostimulation devices. METHODS: Here, we tested a polarity reversal from conventional monopolar cathodic to anodic stimulation in an acute double-blind, randomized, cross-over study in patients with PD implanted with bilateral STN DBS. The primary outcome measure was the difference between efficacy and side-effect thresholds (current amplitude, mA) in a monopolar review and the severity of motor symptoms (as assessed by MDS-UPDRS III ratings) after 30 min of continuous stimulation in the medication off-state. RESULTS: Effect and side effect thresholds were significantly higher with anodic compared to cathodic stimulation (3.36 ±â€¯1.58 mA vs. 1.99 ±â€¯1.37 mA; 6.05 ±â€¯1.52 mA vs. 4.15 ±â€¯1.13 mA; both p < 0.0001). However, using a predefined amplitude of 0.5 mA below the respective adverse effect threshold, blinded MDS-UPDRS-III-ratings were significantly lower with anodic stimulation (anodic: median 17 [min: 12, max: 25]; cathodic: 23 [12, 37]; p < 0.005). CONCLUSION: Effective anodic stimulation requires a higher charge injection into the tissue, but may provide a better reduction of off-period motor symptoms within the individual therapeutic window. Therefore, a programming change to anodic stimulation may be considered in patients suffering from residual off-period motor symptoms of PD despite reaching the adverse effect threshold of cathodic stimulation in the subthalamic nucleus.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Biofísica , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa