Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 152(5): 1065-76, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452854

RESUMO

Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and are associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas, independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastasis, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1-and not vascular endothelial growth factor receptor 1-to promote tumor cell survival. This critical tumor-stroma interaction-mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes-supports the development of therapies targeting PlGF/Nrp1 pathway.


Assuntos
Neoplasias Cerebelares/patologia , Cerebelo/metabolismo , Meduloblastoma/patologia , Neuropilina-1/metabolismo , Proteínas da Gravidez/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Neoplasias Cerebelares/metabolismo , Humanos , Meduloblastoma/metabolismo , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Comunicação Parácrina , Fator de Crescimento Placentário , Transplante Heterólogo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
J Immunol ; 197(4): 1389-98, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27430720

RESUMO

Netrin-1 is a neuronal guidance cue that regulates cellular activation, migration, and cytoskeleton rearrangement in multiple cell types. It is a chemotropic protein that is expressed within tissues and elicits both attractive and repulsive migratory responses. Netrin-1 has recently been found to modulate the immune response via the inhibition of neutrophil and macrophage migration. However, the ability of Netrin-1 to interact with lymphocytes and its in-depth effects on leukocyte migration are poorly understood. In this study, we profiled the mRNA and protein expression of known Netrin-1 receptors on human CD4(+) T cells. Neogenin, uncoordinated-5 (UNC5)A, and UNC5B were expressed at low levels in unstimulated cells, but they increased following mitogen-dependent activation. By immunofluorescence, we observed a cytoplasmic staining pattern of neogenin and UNC5A/B that also increased following activation. Using a novel microfluidic assay, we found that Netrin-1 stimulated bidirectional migration and enhanced the size of migratory subpopulations of mitogen-activated CD4(+) T cells, but it had no demonstrable effects on the migration of purified CD4(+)CD25(+)CD127(dim) T regulatory cells. Furthermore, using a short hairpin RNA knockdown approach, we observed that the promigratory effects of Netrin-1 on T effectors is dependent on its interactions with neogenin. In the humanized SCID mouse, local injection of Netrin-1 into skin enhanced inflammation and the number of neogenin-expressing CD3(+) T cell infiltrates. Neogenin was also observed on CD3(+) T cell infiltrates within human cardiac allograft biopsies with evidence of rejection. Collectively, our findings demonstrate that Netrin-1/neogenin interactions augment CD4(+) T cell chemokinesis and promote cellular infiltration in association with acute inflammation in vivo.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quimiotaxia de Leucócito/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Western Blotting , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas In Vitro , Camundongos , Camundongos SCID , Técnicas Analíticas Microfluídicas , Receptores de Netrina , Netrina-1 , Reação em Cadeia da Polimerase em Tempo Real
3.
Am J Pathol ; 186(11): 2803-2812, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27751443

RESUMO

The vasculature influences the progression and resolution of tissue inflammation. Capillaries express vascular endothelial growth factor (VEGF) receptors, including neuropilins (NRPs), which regulate interstitial fluid flow. NRP2, a receptor of VEGFA and semaphorin (SEMA) 3F ligands, is expressed in the vascular and lymphatic endothelia. Previous studies have demonstrated that blocking VEGF receptor 2 attenuates VEGFA-induced vascular permeability. The inhibition of NRP2 was hypothesized to decrease vascular permeability as well. Unexpectedly, massive tissue swelling and edema were observed in Nrp2-/- mice compared with wild-type littermates after delayed-type hypersensitivity reactions. Vascular permeability was twofold greater in inflamed blood vessels in Nrp2-deficient mice compared to those in Nrp2-intact littermates. The addition of exogenous SEMA3F protein inhibited vascular permeability in Balb/cJ mice, suggesting that the loss of endogenous Sema3F activity in the Nrp2-deficient mice was responsible for the enhanced vessel leakage. Functional lymphatic capillaries are necessary for draining excess fluid after inflammation; however, Nrp2-mutant mice lacked superficial lymphatic capillaries, leading to 2.5-fold greater fluid retention and severe lymphedema after inflammation. In conclusion, Nrp2 deficiency increased blood vessel permeability and decreased lymphatic vessel drainage during inflammation, highlighting the importance of the NRP2/SEMA3F pathway in the modulation of tissue swelling and resolution of postinflammatory edema.


Assuntos
Linfedema/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-2/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Vasos Sanguíneos/fisiopatologia , Permeabilidade Capilar , Feminino , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Vasos Linfáticos/fisiopatologia , Linfedema/fisiopatologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Neuropilina-2/genética , Neuropilina-2/metabolismo , Organismos Livres de Patógenos Específicos , Fator A de Crescimento do Endotélio Vascular/genética
4.
Curr Opin Organ Transplant ; 22(1): 55-63, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27898465

RESUMO

PURPOSE OF REVIEW: Chronic rejection is associated with persistent mononuclear cell recruitment, endothelial activation and proliferation, local tissue hypoxia and related biology that enhance effector immune responses. In contrast, the tumor microenvironment elicits signals/factors that inhibit effector T cell responses and rather promote immunoregulation locally within the tissue itself. The identification of immunoregulatory check points and/or secreted factors that are deficient within allografts is of great importance in the understanding and prevention of chronic rejection. RECENT FINDINGS: The relative deficiency of immunomodulatory molecules (cell surface and secreted) on microvascular endothelial cells within the intragraft microenvironment, is of functional importance in shaping the phenotype of rejection. These regulatory molecules include coinhibitory and/or intracellular regulatory signals/factors that enhance local activation of T regulatory cells. For example, semaphorins may interact with endothelial cells and CD4 T cells to promote local tolerance. Additionally, metabolites and electrolytes within the allograft microenvironment may regulate local effector and regulatory cell responses. SUMMARY: Multiple factors within allografts shape the microenvironment either towards local immunoregulation or proinflammation. Promoting the expression of intragraft cell surface or secreted molecules that support immunoregulation will be critical for long-term graft survival and/or alloimmune tolerance.


Assuntos
Rejeição de Enxerto/imunologia , Tolerância Imunológica/imunologia , Humanos , Microambiente Tumoral
5.
Stem Cells ; 33(1): 133-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25187207

RESUMO

Endothelial glucose transporter 1 (GLUT1) is a definitive and diagnostic marker for infantile hemangioma (IH), a vascular tumor of infancy. To date, GLUT1-positive endothelial cells in IH have not been quantified nor directly isolated and studied. We isolated GLUT1-positive and GLUT1-negative endothelial cells from IH specimens and characterized their proliferation, differentiation, and response to propranolol, a first-line therapy for IH, and to rapamycin, an mTOR pathway inhibitor used to treat an increasingly wide array of proliferative disorders. Although freshly isolated GLUT1-positive cells, selected using anti-GLUT1 magnetic beads, expressed endothelial markers CD31, VE-Cadherin, and vascular endothelial growth factor receptor 2, they converted to a mesenchymal phenotype after 3 weeks in culture. In contrast, GLUT1-negative endothelial cells exhibited a stable endothelial phenotype in vitro. GLUT1-selected cells were clonogenic when plated as single cells and could be induced to redifferentiate into endothelial cells, or into pericytes/smooth muscle cells or into adipocytes, indicating a stem cell-like phenotype. These data demonstrate that, although they appear and function in the tumor as bona fide endothelial cells, the GLUT1-positive endothelial cells display properties of facultative stem cells. Pretreatment with rapamycin for 4 days significantly slowed proliferation of GLUT1-selected cells, whereas propranolol pretreatment had no effect. These results reveal for the first time the facultative nature of GLUT1-positive endothelial cells in IH.


Assuntos
Células Endoteliais/patologia , Transportador de Glucose Tipo 1/metabolismo , Hemangioma/patologia , Células-Tronco Neoplásicas/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Humanos , Lactente , Masculino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Propranolol/farmacologia , Sirolimo/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia
6.
Angiogenesis ; 18(2): 151-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25424831

RESUMO

Lymphatic malformations (LM) are characterized by abnormal formation of lymphatic vessels and tissue overgrowth. The lymphatic vessels present in LM lesions may become blocked and enlarged as lymphatic fluid collects, forming a mass or cyst. Lesions are typically diagnosed during childhood and are often disfiguring and life threatening. Available treatments consist of sclerotherapy, surgical removal and therapies to diminish complications. We isolated lymphatic endothelial cells (LM-LEC) from a surgically removed microcystic LM lesion. LM-LEC and normal human dermal-LEC (HD-LEC) expressed endothelial (CD31, VE-Cadherin) as well as lymphatic endothelial (Podoplanin, PROX1, LYVE1)-specific markers. Targeted gene sequencing analysis in patient-derived LM-LEC revealed the presence of two mutations in class I phosphoinositide 3-kinases (PI3K) genes. One is an inherited, premature stop codon in the PI3K regulatory subunit PIK3R3. The second is a somatic missense mutation in the PI3K catalytic subunit PIK3CA; this mutation has been found in association with overgrowth syndromes and cancer growth. LM-LEC exhibited angiogenic properties: both cellular proliferation and sprouting in collagen were significantly increased compared with HD-LEC. AKT-Thr308 was constitutively hyper-phosphorylated in LM-LEC. Treatment of LM-LEC with PI3-Kinase inhibitors Wortmannin and LY294 decreased cellular proliferation and prevented the phosphorylation of AKT-Thr308 in both HD-LEC and LM-LEC. Treatment with the mTOR inhibitor rapamycin also diminished cellular proliferation, sprouting and AKT phosphorylation, but only in LM-LEC. Our results implicate disrupted PI3K-AKT signaling in LEC isolated from a human lymphatic malformation lesion.


Assuntos
Endotélio/enzimologia , Vasos Linfáticos/anormalidades , Mutação , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Endotélio/patologia , Feminino , Humanos , Masculino , Fosforilação , Sirolimo/farmacologia
7.
Biochem Biophys Res Commun ; 464(1): 126-32, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26086095

RESUMO

Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1(+)) endothelial cells (designated as GLUT1(sel) cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis. We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH.


Assuntos
Células Endoteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Proteínas do Tecido Nervoso/farmacologia , Semaforinas/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hemangioma/irrigação sanguínea , Hemangioma/genética , Hemangioma/patologia , Humanos , Lactente , Neoplasias de Tecido Vascular/irrigação sanguínea , Neoplasias de Tecido Vascular/genética , Neoplasias de Tecido Vascular/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Biol Chem ; 288(4): 2210-22, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23195957

RESUMO

Glioblastomas are very difficult tumors to treat because they are highly invasive and disseminate within the normal brain, resulting in newly growing tumors. We have identified netrin-1 as a molecule that promotes glioblastoma invasiveness. As evidence, netrin-1 stimulates glioblastoma cell invasion directly through Matrigel-coated transwells, promotes tumor cell sprouting and enhances metastasis to lymph nodes in vivo. Furthermore, netrin-1 regulates angiogenesis as shown in specific angiogenesis assays such as enhanced capillary endothelial cells (EC) sprouting and by increased EC infiltration into Matrigel plugs in vivo, as does VEGF-A. This netrin-1 signaling pathway in glioblastoma cells includes activation of RhoA and cyclic AMP response element-binding protein (CREB). A novel finding is that netrin-1-induced glioblastoma invasiveness and angiogenesis are mediated by activated cathepsin B (CatB), a cysteine protease that translocates to the cell surface as an active enzyme and co-localizes with cell surface annexin A2 (ANXA2). The specific CatB inhibitor CA-074Me inhibits netrin-1-induced cell invasion, sprouting, and Matrigel plug angiogenesis. Silencing of CREB suppresses netrin-1-induced glioblastoma cell invasion, sprouting, and CatB expression. It is concluded that netrin-1 plays an important dual role in glioblastoma progression by promoting both glioblastoma cell invasiveness and angiogenesis in a RhoA-, CREB-, and CatB-dependent manner. Targeting netrin-1 pathways may be a promising strategy for brain cancer therapy.


Assuntos
Catepsina B/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Neovascularização Patológica , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Anexina A2/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Colágeno/química , Combinação de Medicamentos , Feminino , Inativação Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Laminina/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Netrina-1 , Ligação Proteica , Proteoglicanas/química , Proteínas Recombinantes/metabolismo
9.
Biochem Biophys Res Commun ; 448(2): 134-8, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24759231

RESUMO

Class 3 semaphorins are axonal guidance mediators and regulators of angiogenesis and tumor progression. Semaphorin 3A and 3F (SEMA3A&F) act by depolymerizing F-actin, resulting in cytoskeleton collapse. A key signaling step is that SEMA3A&F activates ABL2 tyrosine kinase, which activates p190RhoGAP, which in turn inactivates RhoA, thereby diminishing stress fiber formation and ensuing cell migration. We now demonstrate that Gleevec (imatinib, STI571), an ABL2 tyrosine kinase inhibitor, abrogates SEMA3A&F-induced stress fiber loss in glioblastoma cells and endothelial cells and diminishes their ability to inhibit migration. On the other hand, Sutent (sunitinib), a receptor tyrosine kinase inhibitor, did not rescue SEMA3A&F-induced collapsing activity. These results describe a novel property of Gleevec, its ability to antagonize semaphorins.


Assuntos
Benzamidas/farmacologia , Citoesqueleto/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Semaforina-3A/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Proteínas Ativadoras de GTPase/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Proteínas Tirosina Quinases/metabolismo , Semaforina-3A/genética
10.
Angiogenesis ; 16(4): 939-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892628

RESUMO

GATA-binding protein 2 (GATA2) and LIM domain only 2 (Lmo2) form common transcription complexes during hematopoietic differentiation. Here we show that these two transcription factors also play a key role in endothelial cells (EC) and lymphatic EC (LEC) function. Primary EC and tumor-associated blood vessels expressed GATA2 and Lmo2. VEGF-induced sprouting angiogenesis in both differentiating embryonic stem cells (embryoid bodies) and primary EC increased GATA2 and Lmo2 levels. Conversely, silencing of GATA2 and Lmo2 expression in primary EC inhibited VEGF-induced angiogenic activity, including EC migration and sprouting in vitro, two key steps of angiogenesis in vivo. This inhibition of EC function was associated with downregulated expression of neuropilin-2 (NRP2), a co-receptor of VEGFRs for VEGF, at the protein, mRNA and promoter levels. NRP2 overexpression partially rescued the impaired angiogenic sprouting in the GATA2/Lmo2 knockdown EC, confirming that GATA2 and Lmo2 mediated EC function, at least in part, by directly regulating NRP2 gene expression. Furthermore, it was found that primary LEC expressed GATA2 and Lmo2 as well. Silencing of GATA2 and Lmo2 expression in LEC inhibited VEGF-induced LEC sprouting, also in a NRP2-dependent manner. In conclusion, our results demonstrate that GATA2 and Lmo2 cooperatively regulate VEGF-induced angiogenesis and lymphangiogenesis via NRP2.


Assuntos
Células Endoteliais/fisiologia , Fator de Transcrição GATA2/fisiologia , Proteínas com Domínio LIM/fisiologia , Linfangiogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Neuropilina-2/fisiologia , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Corpos Embrioides , Células Endoteliais/metabolismo , Feminino , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas com Domínio LIM/genética , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Neuropilina-2/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia
11.
Am J Pathol ; 181(2): 548-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22688055

RESUMO

Neuropilins (NRPs) are transmembrane receptors that bind class 3 semaphorins and VEGF family members to regulate axon guidance and angiogenesis. Although expression of NRP1 by vascular smooth muscle cells (SMCs) has been reported, NRP function in smooth muscle (SM) in vivo is unexplored. Using Nrp2(+/LacZ) and Nrp2(+/gfp) transgenic mice, we observed robust and sustained expression of Nrp2 in the SM compartments of the bladder and gut, but no expression in vascular SM, skeletal muscle, or cardiac muscle. This expression pattern was recapitulated in vitro using primary human SM cell lines. Alterations in cell morphology after treatment of primary visceral SMCs with the NRP2 ligand semaphorin-3F (SEMA3F) were accompanied by inhibition of RhoA activity and myosin light chain phosphorylation, as well as decreased cytoskeletal stiffness. Ex vivo contractility testing of bladder muscle strips exposed to electrical stimulation or soluble agonists revealed enhanced tension generation of tissues from mice with constitutive or SM-specific knockout of Nrp2, compared with controls. Mice lacking Nrp2 also displayed increased bladder filling pressures, as assessed by cystometry in conscious mice. Together, these findings identify Nrp2 as a mediator of prorelaxant stimuli in SMCs and suggest a novel function for Nrp2 as a regulator of visceral SM contractility.


Assuntos
Contração Muscular/fisiologia , Músculo Liso/fisiologia , Neuropilina-2/deficiência , Neuropilina-2/metabolismo , Animais , Forma Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Deleção de Genes , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Sus scrofa , Bexiga Urinária/citologia , Bexiga Urinária/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Am J Pathol ; 181(5): 1573-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23022210

RESUMO

Oncosomes are tumor-derived microvesicles that transmit signaling complexes between cell and tissue compartments. Herein, we show that amoeboid tumor cells export large (1- to 10-µm diameter) vesicles, derived from bulky cellular protrusions, that contain metalloproteinases, RNA, caveolin-1, and the GTPase ADP-ribosylation factor 6, and are biologically active toward tumor cells, endothelial cells, and fibroblasts. We describe methods by which large oncosomes can be selectively sorted by flow cytometry and analyzed independently of vesicles <1 µm. Structures resembling large oncosomes were identified in the circulation of different mouse models of prostate cancer, and their abundance correlated with tumor progression. Similar large vesicles were also identified in human tumor tissues, but they were not detected in the benign compartment. They were more abundant in metastases. Our results suggest that tumor microvesicles substantially larger than exosome-sized particles can be visualized and quantified in tissues and in the circulation, and isolated and characterized using clinically adaptable methods. These findings also suggest a mechanism by which migrating tumor cells condition the tumor microenvironment and distant sites, thereby potentiating advanced disease.


Assuntos
Micropartículas Derivadas de Células/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Fator 6 de Ribosilação do ADP , Animais , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/ultraestrutura , Citometria de Fluxo , Humanos , Masculino , Camundongos , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias da Próstata/ultraestrutura
13.
Blood ; 117(22): 6024-35, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21355092

RESUMO

The failure of blood vessels to revascularize ischemic neural tissue represents a significant challenge for vascular biology. Examples include proliferative retinopathies (PRs) such as retinopathy of prematurity and proliferative diabetic retinopathy, which are the leading causes of blindness in children and working-age adults. PRs are characterized by initial microvascular degeneration, followed by a compensatory albeit pathologic hypervascularization mounted by the hypoxic retina attempting to reinstate metabolic equilibrium. Paradoxically, this secondary revascularization fails to grow into the most ischemic regions of the retina. Instead, the new vessels are misdirected toward the vitreous, suggesting that vasorepulsive forces operate in the avascular hypoxic retina. In the present study, we demonstrate that the neuronal guidance cue semaphorin 3A (Sema3A) is secreted by hypoxic neurons in the avascular retina in response to the proinflammatory cytokine IL-1ß. Sema3A contributes to vascular decay and later forms a chemical barrier that repels neo-vessels toward the vitreous. Conversely, silencing Sema3A expression enhances normal vascular regeneration within the ischemic retina, thereby diminishing aberrant neovascularization and preserving neuroretinal function. Overcoming the chemical barrier (Sema3A) released by ischemic neurons accelerates the vascular regeneration of neural tissues, which restores metabolic supply and improves retinal function. Our findings may be applicable to other neurovascular ischemic conditions such as stroke.


Assuntos
Isquemia/patologia , Neovascularização Patológica , Neurônios/patologia , Oxigênio/toxicidade , Regeneração , Doenças Retinianas/patologia , Semaforina-3A/fisiologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Técnicas Imunoenzimáticas , Interleucina-1beta/farmacologia , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , RNA Mensageiro/genética , Ratos , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Neovascularização Retiniana , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Angiogenesis ; 15(3): 481-95, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22614697

RESUMO

Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b(+) macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to over-express ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b(+) macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages.


Assuntos
Tecido Adiposo/patologia , Inflamação/patologia , Macrófagos/patologia , Neoplasias Experimentais/patologia , Neovascularização Patológica , Animais , Meios de Cultivo Condicionados , Citometria de Fluxo , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/irrigação sanguínea , Reação em Cadeia da Polimerase
15.
Blood ; 116(17): 3367-71, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20453162

RESUMO

The hypothesis that bone marrow-derived, circulating endothelial cells incorporate into tumor blood vessels is unresolved. We have measured the numbers of bone marrow-derived versus resident endothelial cells in spontaneous prostate cancers during different stages of tumor progression and in age-matched normal prostates. Bone marrow-derived endothelial cells were rare in dysplasia and in well differentiated cancers representing between 0 and 0.04% of the total tumor mass. Instead, approximately 99% of all tumor-associated bone marrow-derived cells were CD45(+) hematopoietic cells, including GR-1(+), F4-80(+), and CD11b(+) myeloid cells. Similar to peripheral blood mononuclear cells, these tumor-associated myeloid cells expressed matrix metalloproteinases (MMPs), consistent with their proposed catalytic role during tumor angiogenesis. Furthermore, freshly isolated CD11b(+) cells stimulated tumor endothelial cell cord formation by 10-fold in an in vitro angiogenesis assay. The bone marrow is, therefore, a reservoir for cells that augment tumor angiogenesis, but the tumor endothelium is derived primarily from the local environment.


Assuntos
Adenocarcinoma/patologia , Medula Óssea/patologia , Células Endoteliais/patologia , Células Mieloides/patologia , Neoplasias da Próstata/patologia , Animais , Humanos , Antígenos Comuns de Leucócito/imunologia , Masculino , Camundongos , Células Mieloides/imunologia , Neovascularização Patológica/patologia , Próstata/citologia , Próstata/patologia
16.
Proc Natl Acad Sci U S A ; 105(32): 11305-10, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18685096

RESUMO

Tumor blood vessels exhibit abnormal structure and function that cause disturbed blood flow and high interstitial pressure, which impair delivery of anti-cancer agents. Past efforts to normalize the tumor vasculature have focused on inhibition of soluble angiogenic factors, such as VEGF; however, capillary endothelial (CE) cell growth and differentiation during angiogenesis are also influenced by mechanical forces conveyed by the extracellular matrix (ECM). Here, we explored the possibility that tumor CE cells form abnormal vessels because they lose their ability to sense and respond to these physical cues. These studies reveal that, in contrast to normal CE cells, tumor-derived CE cells fail to reorient their actin cytoskeleton when exposed to uniaxial cyclic strain, exhibit distinct shape sensitivity to variations in ECM elasticity, exert greater traction force, and display an enhanced ability to retract flexible ECM substrates and reorganize into tubular networks in vitro. These behaviors correlate with a constitutively high level of baseline activity of the small GTPase Rho and its downstream effector, Rho-associated kinase (ROCK). Moreover, decreasing Rho-mediated tension by using the ROCK inhibitor, Y27632, can reprogram the tumor CE cells so that they normalize their reorientation response to uniaxial cyclic strain and their ability to form tubular networks on ECM gels. Abnormal Rho-mediated sensing of mechanical cues in the tumor microenvironment may therefore contribute to the aberrant behaviors of tumor CE cells that result in the development of structural abnormalities in the cancer microvasculature.


Assuntos
Adenocarcinoma/metabolismo , Células Endoteliais/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/patologia , Amidas/farmacologia , Animais , Forma Celular , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Elasticidade , Células Endoteliais/patologia , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Receptor Quinase 1 Acoplada a Proteína G/antagonistas & inibidores , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/patologia , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/patologia , Piridinas/farmacologia , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/biossíntese
17.
Biochem Biophys Res Commun ; 394(4): 947-54, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20302845

RESUMO

Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.


Assuntos
Linhagem Celular Tumoral , Células Endoteliais/patologia , Neovascularização Patológica/patologia , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/farmacologia , Animais , Antígenos CD/biossíntese , Antígenos CD1/biossíntese , Biomarcadores Tumorais/biossíntese , Caderinas/biossíntese , Ensaios de Seleção de Medicamentos Antitumorais , Endoglina , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas dos Microfilamentos , Neovascularização Patológica/metabolismo , Receptores de Superfície Celular , Receptores de Peptídeos/biossíntese , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Am J Pathol ; 175(6): 2657-67, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19875502

RESUMO

Tumor blood vessels are thought to contain genetically normal and stable endothelial cells (ECs), unlike tumor cells, which typically display genetic instability. Yet, chromosomal aberration in human tumor-associated ECs (hTECs) in carcinoma has not yet been investigated. Here we isolated TECs from 20 human renal cell carcinomas and analyzed their cytogenetic abnormalities. The degree of aneuploidy was analyzed by fluorescence in situ hybridization using chromosome 7 and chromosome 8 DNA probes in isolated hTECs. In human renal cell carcinomas, 22-58% (median, 33%) of uncultured hTECs were aneuploid, whereas normal ECs were diploid. The mechanisms governing TEC aneuploidy were then studied using mouse TECs (mTECs) isolated from xenografts of human epithelial tumors. To investigate the contribution of progenitor cells to aneuploidy in mTECs, CD133(+) and CD133(-) mTECs were compared for aneuploidy. CD133(+) mTECs showed aneuploidy more frequently than CD133(-) mTECs. This is the first report showing cytogenetic abnormality of hTECs in carcinoma, contrary to traditional belief. Cytogenetic alterations in tumor vessels of carcinoma therefore can occur and may play a significant role in modifying tumor- stromal interactions.


Assuntos
Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Células Endoteliais/patologia , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neovascularização Patológica/genética , Antígeno AC133 , Antígenos CD/biossíntese , Separação Celular , Proteínas Cromossômicas não Histona/biossíntese , Proteínas Cromossômicas não Histona/genética , Aberrações Cromossômicas , Citometria de Fluxo , Glicoproteínas/biossíntese , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Peptídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Blood ; 112(9): 3638-49, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18664627

RESUMO

Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells into vascular structures. All 3 ligands induced similar level of VEGFR-2 tyrosine phosphorylation in the presence of NRP1. In contrast, sprouting angiogenesis in differentiating embryonic stem cells (embryoid bodies), formation of branching pericyte-embedded vessels in subcutaneous matrigel plugs, and sprouting of intersegmental vessels in developing zebrafish were induced by VEGF-A165 and VEGF-E-NZ2 but not by VEGF-A121. Analyses of recombinant factors with NRP1-binding gain- and loss-of-function properties supported the conclusion that NRP1 is critical for VEGF-induced sprouting and branching of endothelial cells. Signal transduction antibody arrays implicated NRP1 in VEGF-induced activation of p38MAPK. Inclusion of the p38MAPK inhibitor SB203580 in VEGF-A165-containing matrigel plugs led to attenuated angiogenesis and poor association with pericytes. Our data strongly indicate that the ability of VEGF ligands to bind NRP1 influences p38MAPK activation, and formation of functional, pericyte-associated vessels.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neuropilina-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Animais Geneticamente Modificados , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Modelos Biológicos , Neovascularização Fisiológica , Neuropilina-1/genética , Pericitos/citologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
20.
Kidney Int ; 75(6): 605-16, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19037249

RESUMO

Advanced glycation end products (AGEs) have been linked to the pathogenesis of diabetic nephropathy. Here we tested the effect of AGE-modified bovine serum albumin (AGE-BSA) on differentiated mouse podocytes in culture. Differential display and real-time PCR analyses showed that in addition to neuropilin-1, the entire signaling receptor complex of neuropilin-2, semaphorin-3A, and plexin-A1, was significantly reduced by AGE-BSA as was neuropilin-1 protein. The effect was specific for podocytes compared to isolated mesangial and tubular epithelial cells. Further, AGE-BSA was not toxic to podocytes. Neuropilin-1 expression was decreased in glomeruli of diabetic db/db mice compared to their non-diabetic littermates. Transcripts of both neuropilins were found to be decreased in renal biopsies from patients with diabetic nephropathy compared to transplant donors. Podocyte migration was inhibited by AGE-BSA with similar results found in the absence of AGE-BSA when neuropilin-1 expression was down-regulated by siRNA. In contrast, podocyte migration was stimulated by overexpression of neuropilin-1 even in the presence of AGE-BSA. Our study shows that AGE-BSA inhibited podocyte migration by down-regulating neuropilin-1. The decreased migration could lead to adherence of uncovered areas of the glomerular basement membrane to Bowman's capsule contributing to focal glomerulosclerosis.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Neuropilina-1/antagonistas & inibidores , Podócitos/metabolismo , Soroalbumina Bovina/farmacologia , Animais , Diabetes Mellitus , Nefropatias Diabéticas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Neuropilina-1/genética , Neuropilina-2/genética , RNA Mensageiro/análise , Receptores de Superfície Celular/genética , Semaforina-3A/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa