Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Comput Biol ; 20(3): e1011881, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442111

RESUMO

Antibody-based therapeutics must not undergo chemical modifications that would impair their efficacy or hinder their developability. A commonly used technique to de-risk lead biotherapeutic candidates annotates chemical liability motifs on their sequence. By analyzing sequences from all major sources of data (therapeutics, patents, GenBank, literature, and next-generation sequencing outputs), we find that almost all antibodies contain an average of 3-4 such liability motifs in their paratopes, irrespective of the source dataset. This is in line with the common wisdom that liability motif annotation is over-predictive. Therefore, we have compiled three computational flags to prioritize liability motifs for removal from lead drug candidates: 1. germline, to reflect naturally occurring motifs, 2. therapeutic, reflecting chemical liability motifs found in therapeutic antibodies, and 3. surface, indicative of structural accessibility for chemical modification. We show that these flags annotate approximately 60% of liability motifs as benign, that is, the flagged liabilities have a smaller probability of undergoing degradation as benchmarked on two experimental datasets covering deamidation, isomerization, and oxidation. We combined the liability detection and flags into a tool called Liability Antibody Profiler (LAP), publicly available at lap.naturalantibody.com. We anticipate that LAP will save time and effort in de-risking therapeutic molecules.


Assuntos
Anticorpos , Sequenciamento de Nucleotídeos em Larga Escala , Anticorpos/uso terapêutico , Probabilidade
2.
J Biomed Sci ; 28(1): 11, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482842

RESUMO

Therapeutic antibodies are instrumental in improving the treatment outcome for certain disease conditions. However, to enhance their efficacy and specificity, many efforts are continuously made. One of the approaches that are increasingly explored in this field are pH-responsive antibodies capable of binding target antigens in a pH-dependent manner. We reviewed suitability and examples of these antibodies that are functionally modulated by the tumor microenvironment. Provided in this review is an update about antigens targeted by pH-responsive, sweeping, and recycling antibodies. Applicability of the pH-responsive antibodies in the engineering of chimeric antigen receptor T-cells (CAR-T) and in improving drug delivery to the brain by the enhanced crossing of the blood-brain barrier is also discussed. The pH-responsive antibodies possess strong treatment potential. They emerge as next-generation programmable engineered biologic drugs that are active only within the targeted biological space. Thus, they are valuable in targeting acidified tumor microenvironment because of improved spatial persistence and reduced on-target off-tumor toxicities. We predict that the programmable pH-dependent antibodies become powerful tools in therapies of cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Humanos , Concentração de Íons de Hidrogênio , Camundongos
3.
Protein Expr Purif ; 110: 151-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25758709

RESUMO

The first reports about successfully expressed recombinant proteins with the use of a baculovirus vector were published over 30years ago. Despite the long time of refining this expression system, early problems with the production of baculovirus-derived secretory proteins are still not satisfactorily solved. The high expression level driven by baculoviral promoters often does not result in the desired yield of secreted recombinant proteins, which frequently accumulate inside insect cells and are only partially processed. During our attempts to produce vascular endothelial growth factor C (VEGF-C) with the use of a baculovirus vector we also faced an inefficient secretion of the recombinant protein to culture medium. We were not able to improve the outcome and obtain an acceptable concentration of VEGF-C in the medium by changing the culture conditions or utilizing different signal peptides. However, as a significant amount of native VEGF-C was detected inside the baculovirus-infected cells, we developed a simple method to purify recombinant, glycosylated VEGF-C from a lysate of the cells. The presented results indicate that the lack of a secretory protein in the insect cell culture medium after baculovirus infection does not necessarily signify failure in the production of the protein. As demonstrated by us and contrary to generally accepted views, the lysate of baculovirus-infected cells may constitute a valuable source of the biologically active, secretory protein.


Assuntos
Baculoviridae/genética , Clonagem Molecular/métodos , Células Endoteliais/química , Células Sf9/química , Fator C de Crescimento do Endotélio Vascular/isolamento & purificação , Animais , Baculoviridae/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Engenharia Genética , Glicosilação , Humanos , Camundongos , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Spodoptera , Fator C de Crescimento do Endotélio Vascular/biossíntese , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Front Mol Biosci ; 11: 1352508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606289

RESUMO

Antibodies are proteins produced by our immune system that have been harnessed as biotherapeutics. The discovery of antibody-based therapeutics relies on analyzing large volumes of diverse sequences coming from phage display or animal immunizations. Identification of suitable therapeutic candidates is achieved by grouping the sequences by their similarity and subsequent selection of a diverse set of antibodies for further tests. Such groupings are typically created using sequence-similarity measures alone. Maximizing diversity in selected candidates is crucial to reducing the number of tests of molecules with near-identical properties. With the advances in structural modeling and machine learning, antibodies can now be grouped across other diversity dimensions, such as predicted paratopes or three-dimensional structures. Here we benchmarked antibody grouping methods using clonotype, sequence, paratope prediction, structure prediction, and embedding information. The results were benchmarked on two tasks: binder detection and epitope mapping. We demonstrate that on binder detection no method appears to outperform the others, while on epitope mapping, clonotype, paratope, and embedding clusterings are top performers. Most importantly, all the methods propose orthogonal groupings, offering more diverse pools of candidates when using multiple methods than any single method alone. To facilitate exploring the diversity of antibodies using different methods, we have created an online tool-CLAP-available at (clap.naturalantibody.com) that allows users to group, contrast, and visualize antibodies using the different grouping methods.

5.
Sci Rep ; 11(1): 10295, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986441

RESUMO

The binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.


Assuntos
Colagenases/farmacologia , Imunoglobulina G/imunologia , Macrófagos/efeitos dos fármacos , Peptídeo Hidrolases/farmacologia , Animais , Citometria de Fluxo , Glicosilação , Macrófagos/imunologia , Camundongos , Ligação Proteica
6.
Front Immunol ; 9: 1096, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875771

RESUMO

Mouse IgG3 is highly protective against several life-threatening bacteria. This isotype is the only one among mouse IgGs that forms non-covalent oligomers, has increased functional affinity to polyvalent antigens, and efficiently agglutinates erythrocytes. IgG3 also triggers the complement cascade. The high efficacy of protection after passive immunization with IgG3 is correlated with the unique properties of this isotype. Although the features of IgG3 are well documented, their molecular basis remains elusive. Based on functional analyses of IgG1/IgG3 hybrid molecules with swapped constant domains, we identified IgG3-derived CH2 domain as a major determinant of antibody oligomerization and increased functional affinity to a multivalent antigen. The CH2 domain was also crucial for efficient hemagglutination triggered by IgG3 and was indispensable for complement cascade activation. This domain is glycosylated and atypically charged. A mutational analysis based on molecular models of CH2 domain charge distribution indicated that the functional affinity was influenced by the specific charge location. N-glycans were essential for CH2-dependent enhancement of hemagglutination and complement activation. Oligomerization was independent of CH2 charge and glycosylation. We also verified that known C1q-binding motifs are functional in mouse IgG3 but not in IgG1 framework. We generated for the first time a gain-of-function antibody with properties transferred from IgG3 into IgG1 by replacing the CH2 domain. Finding that the CH2 domain of IgG3 governs unique properties of this isotype is likely to open an avenue toward the generation of IgG3-inspired antibodies that will be protective against existing or emerging lethal pathogens.


Assuntos
Afinidade de Anticorpos/imunologia , Antígenos/imunologia , Hemaglutinação/imunologia , Imunoglobulina G/imunologia , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Animais , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Testes de Hemaglutinação , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/química , Camundongos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade
7.
Sci Rep ; 8(1): 519, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323348

RESUMO

IgM is a multivalent antibody which evolved as a first line defense of adaptive immunity. It consists of heavy and light chains assembled into a complex oligomer. In mouse serum there are two forms of IgM, a full-length and a truncated one. The latter contains µ' chain, which lacks a variable region. Although µ' chain was discovered many years ago, its origin has not yet been elucidated. Our results indicate that µ' chain is generated from a full-length heavy chain by non-enzymatic cleavage of the protein backbone. The cleavage occurred specifically after Asn209 and is prevented by mutating this residue into any other amino acid. The process requires the presence of other proteins, preferentially with an acidic isoelectric point, and is facilitated by neutral or alkaline pH. This unique characteristic of the investigated phenomenon distinguishes it from other, already described, Asn-dependent protein reactions. A single IgM molecule is able to bind up to 12 epitopes via its antigen binding fragments (Fabs). The cleavage at Asn209 generates truncated IgM molecules and free Fabs, resulting in a reduced IgM valence and probably affecting IgM functionality in vivo.


Assuntos
Imunoglobulina M/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/metabolismo , Imunoglobulina M/química , Imunoglobulina M/genética , Camundongos , Mutagênese Sítio-Dirigida , Domínios Proteicos
8.
Eur J Cancer ; 83: 19-27, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28709135

RESUMO

Photodynamic therapy (PDT) has been shown to destroy tumour-associated lymphatic vessels. Therefore, we sought to investigate the functional outcomes of PDT-mediated damage to the lymphatic vessels. We observed that PDT with verteporfin, completely but transiently, blocks the functional lymphatic drainage in the orthotopic mammary tumour models. Sustained inhibition of lymphatic vessels regeneration induced by lenalidomide or the soluble form of vascular endothelial growth factor receptor 3 (sVEGFR3) that neutralises lymphangiogenic vascular endothelial growth factor C (VEGF-C), significantly impaired antitumour efficacy of PDT. Antilymphangiogenic compounds also significantly inhibited the ability of intratumourally inoculated dendritic cells (DCs) to translocate to local lymph nodes and diminished the number of tumour-infiltrating interferon-γ-secreting or tumour antigen-specific CD8+ T cells. Lenalidomide also abrogated antitumour effects of the combination immunotherapy with PDT and anti-programmed death-ligand 1 (PD-L1) antibodies. Altogether, these findings indicate that PDT-mediated damage to the lymphatic vessels negatively affects development of antitumour immunity, and that drugs that impair lymphatic vessel regeneration might not be suitable for the use in combination with PDT.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Fotoquimioterapia , Porfirinas/metabolismo , Porfirinas/farmacologia , Talidomida/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Lenalidomida , Linfangiogênese/efeitos da radiação , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Fotossensibilizantes/farmacologia , Talidomida/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Verteporfina
9.
Sci Rep ; 6: 30938, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484487

RESUMO

Mouse immunoglobulins M (IgMs) that recognize human blood group antigens induce haemagglutination and are used worldwide for diagnostic blood typing. Contrary to the current belief that IgGs are too small to simultaneously bind antigens on two different erythrocytes, we obtained agglutinating mouse IgG3 that recognized antigen B of the human ABO blood group system. Mouse IgG3 is an intriguing isotype that has the ability to form Fc-dependent oligomers. However, F(ab')2 fragments of the IgG3 were sufficient to agglutinate type B red blood cells; therefore, IgG3-triggered agglutination did not require oligomerization. Molecular modelling indicated that mouse IgG3 has a larger range of Fab arms than other mouse IgG subclasses and that the unique properties of mouse IgG3 are likely due to the structure of its hinge region. With a focus on applications in diagnostics, we compared the stability of IgG3 and two IgMs in formulated blood typing reagents using an accelerated storage approach and differential scanning calorimetry. IgG3 was much more stable than IgMs. Interestingly, the rapid decrease in IgM activity was caused by aggregation of the molecules and a previously unknown posttranslational proteolytic processing of the µ heavy chain. Our data point to mouse IgG3 as a potent diagnostic tool.


Assuntos
Sistema ABO de Grupos Sanguíneos/sangue , Tipagem e Reações Cruzadas Sanguíneas/métodos , Hemaglutinação , Imunoglobulina G/química , Imunoglobulina M/química , Animais , Humanos , Camundongos
10.
Immunol Lett ; 167(2): 95-102, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219832

RESUMO

Tomlinson I+J are synthetic phagemid human scFv libraries widely employed to obtain specific antibody fragments via a phage display method. The pIT2/HB2151 expression system proposed by the designers of the libraries has certain drawbacks which result in the lack of expression or low expression levels of numerous soluble scFvs. At the stage of scFv screening, this may lead to losing some excellent antibodies, which can be avoided but requires laborious and expensive work. Here we present a new, pET-30-based vector, which is compatible with Tomlinson libraries, retains all virtues of pIT2 used as a plasmid and eliminates all its flaws. We demonstrate that pET-scFv-T is frequently superior to pIT2 in terms of efficient scFv expression. Moreover, an amber suppressor bacterial strain, RosettaBlue(DE3)pLysS, transformed with the new vector, pET-scFv-T, coding for a number of scFvs, produces substantial amounts of functional, easy to purify recombinant antibody fragments, regardless of whether their coding sequences contain amber codons. Thus, pET-scFv-T/RosettaBlue(DE3)pLysS expression system seems to be a perfect tool for screening for the finest soluble scFvs selected from Tomlinson I+J, as well as from many other phagemid libraries.


Assuntos
Expressão Gênica , Vetores Genéticos/genética , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética , Sequência de Bases , Códon , Escherichia coli/genética , Ordem dos Genes , Humanos , Fases de Leitura Aberta , Anticorpos de Cadeia Única/isolamento & purificação
11.
Acta Biochim Pol ; 60(3): 263-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23819129

RESUMO

Blood and lymphatic vessel formation is an indispensable factor for cancer progression and metastasis. Therefore, various strategies designed to block angiogenesis and lymphangiogenesis are being investigated in the hope to arrest and reverse tumor development. Monoclonal antibodies, owing to their unequalled diversity and specificity, might be applied to selectively inhibit the pathways that cancer cells utilize to build up a network of blood vessels and lymphatics. Among the possible targets of antibody-based therapies are proangiogenic and prolymphangiogenic growth factors from the VEGF family and the receptors to which they bind (VEGFRs). Here, we present molecular mechanisms of angiogenesis and lymphangiogenesis exploited by tumors to progress and metastasise, with examples of antibody-based therapeutic agents directed at interfering with these processes. The expanding knowledge of vascular biology helps to explain some of the problems encountered in such therapies, that arise due to the redundancy in signaling networks controlling the formation of blood and lymphatic vessels, and lead to tumor drug resistance. Nonetheless, combined treatments and treatments focused on newly discovered proangiogenic and prolymphangiogenic factors give hope that more prominent therapeutic effects might be achieved in the future.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfangiogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Metástase Linfática , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/patologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa