Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Physiol ; 86: 149-173, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345907

RESUMO

Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.


Assuntos
Encéfalo , Glucose , Animais , Humanos , Glucose/metabolismo , Epitélio/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Intestinos , Mamíferos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(27): e2211041120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364105

RESUMO

The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
3.
J Cell Sci ; 136(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815440

RESUMO

Skeletal muscle insulin resistance, a major contributor to type 2 diabetes, is linked to the consumption of saturated fats. This insulin resistance arises from failure of insulin-induced translocation of glucose transporter type 4 (GLUT4; also known as SLC2A4) to the plasma membrane to facilitate glucose uptake into muscle. The mechanisms of defective GLUT4 translocation are poorly understood, limiting development of insulin-sensitizing therapies targeting muscle glucose uptake. Although many studies have identified early insulin signalling defects and suggest that they are responsible for insulin resistance, their cause-effect has been debated. Here, we find that the saturated fat palmitate (PA) causes insulin resistance owing to failure of GLUT4 translocation in skeletal muscle myoblasts and myotubes without impairing signalling to Akt2 or AS160 (also known as TBC1D4). Instead, PA altered two basal-state events: (1) the intracellular localization of GLUT4 and its sorting towards a perinuclear storage compartment, and (2) actin filament stiffness, which prevents Rac1-dependent actin remodelling. These defects were triggered by distinct mechanisms, respectively protein palmitoylation and endoplasmic reticulum (ER) stress. Our findings highlight that saturated fats elicit muscle cell-autonomous dysregulation of the basal-state machinery required for GLUT4 translocation, which 'primes' cells for insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Palmitatos/farmacologia , Palmitatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4 , Insulina/metabolismo , Músculo Esquelético/metabolismo , Transporte Proteico , Citoesqueleto de Actina/metabolismo , Glucose/metabolismo
4.
J Cell Sci ; 133(5)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144195

RESUMO

The bone marrow is a spatially restricted niche, housing cells of the hematopoietic and mesenchymal lineages in various hierarchical commitment states. Although highly localized, cells within this niche are also subject to regulation by environmental and/or circulatory changes through extensive vascularization. Bone marrow adipocytes, derived from mesenchymal stem cells and once known as marrow space fillers, are a heterogeneous population. These cells reside in distinct niches within the bone marrow and interact with proximal cells, such as hematopoietic precursors and lineage-committed cells. In this diverse cellular milieu, bone marrow adipocytes influence commitment decisions and cellular lineage selection by interacting with stem and progenitor cells. In addition, bone marrow adipocytes respond to environmental changes, such as obesity, by undergoing hypertrophy, hyperplasia or adoption of characteristics resembling those of peripheral brown, beige or white adipocytes. Here, we review recent findings and concepts on the influence of bone marrow adipocytes on hematopoietic and other cellular lineages within this niche. We discuss how changes in local, systemic, cellular and secreted signals impact on mesenchymal stem cell expansion, differentiation and lineage commitment. Furthermore, we highlight that bone marrow adipocytes may be intermediaries conveying environmental cues to influence hematopoietic cellular survival, proliferation and preferential differentiation.


Assuntos
Tecido Adiposo , Medula Óssea , Adipócitos , Células da Medula Óssea , Comunicação Celular , Diferenciação Celular , Humanos , Obesidade
5.
Int J Obes (Lond) ; 46(4): 726-738, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897286

RESUMO

BACKGROUND: Pannexin 3 (PANX3) is a channel-forming glycoprotein that enables nutrient-induced inflammation in vitro, and genetic linkage data suggest that it regulates body mass index. Here, we characterized inflammatory and metabolic parameters in global Panx3 knockout (KO) mice in the context of forced treadmill running (FEX) and high-fat diet (HFD). METHODS: C57BL/6N (WT) and KO mice were randomized to either a FEX running protocol or no running (SED) from 24 until 30 weeks of age. Body weight was measured biweekly, and body composition was measured at 24 and 30 weeks of age. Male WT and KO mice were fed a HFD from 12 to 28 weeks of age. Metabolic organs were analyzed for a panel of inflammatory markers and PANX3 expression. RESULTS: In females there were no significant differences in body composition between genotypes, which could be due to the lack of PANX3 expression in female white adipose tissue, while male KOs fed a chow diet had lower body weight and lower fat mass at 24 and 30 weeks of age, which was reduced to the same extent as 6 weeks of FEX in WT mice. In addition, male KO mice exhibited significantly lower expression of multiple pro-inflammatory genes in white adipose tissue compared to WT mice. While on a HFD body weight differences were insignificant, multiple inflammatory genes were significantly different in quadriceps muscle and white adipose tissue resulting in a more anti-inflammatory phenotype in KO mice compared to WT. The lower fat mass in male KO mice may be due to significantly fewer adipocytes in their subcutaneous fat compared to WT mice. Mechanistically, adipose stromal cells (ASCs) cultured from KO mice grow significantly slower than WT ASCs. CONCLUSION: PANX3 is expressed in male adult mouse adipose tissue and may regulate adipocyte numbers, influencing fat accumulation and inflammation.


Assuntos
Tecido Adiposo , Obesidade , Tecido Adiposo/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
6.
Biochem J ; 478(2): 407-422, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33393983

RESUMO

Insulin stimulates glucose uptake in muscle cells by rapidly redistributing vesicles containing GLUT4 glucose transporters from intracellular compartments to the plasma membrane (PM). GLUT4 vesicle fusion requires the formation of SNARE complexes between vesicular VAMP and PM syntaxin4 and SNAP23. SNARE accessory proteins usually regulate vesicle fusion processes. Complexins aide in neuro-secretory vesicle-membrane fusion by stabilizing trans-SNARE complexes but their participation in GLUT4 vesicle fusion is unknown. We report that complexin-2 is expressed and homogeneously distributed in L6 rat skeletal muscle cells. Upon insulin stimulation, a cohort of complexin-2 redistributes to the PM. Complexin-2 knockdown markedly inhibited GLUT4 translocation without affecting proximal insulin signalling of Akt/PKB phosphorylation and actin fiber remodelling. Similarly, complexin-2 overexpression decreased maximal GLUT4 translocation suggesting that the concentration of complexin-2 is finely tuned to vesicle fusion. These findings reveal an insulin-dependent regulation of GLUT4 insertion into the PM involving complexin-2.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Transportador de Glucose Tipo 4/genética , Insulina/genética , Insulina/metabolismo , Músculo Esquelético/citologia , Mioblastos/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Traffic ; 20(6): 390-403, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950163

RESUMO

An endothelial cell monolayer separates interstitia from blood and lymph, and determines the bidirectional transfer of solutes and macromolecules across these biological spaces. We review advances in transport modalities across these endothelial barriers. Glucose is a major fuel for the brain and peripheral tissues, and insulin acts on both central and peripheral tissues to promote whole-body metabolic signalling and anabolic activity. Blood-brain barrier endothelial cells display stringent tight junctions and lack pinocytic activity. Delivery of blood glucose and insulin to the brain occurs through their respective carrier (Glucose transporter 1) and receptor (insulin receptor), enacting bona fide transcytosis. At supraphysiological concentrations, insulin is also likely transferred by fluid phase cellular uptake and paracellular transport, especially in peripheral microvascular endothelia. The lymphatic microvasculature also transports insulin but in this case from tissues to lymph and therefrom to blood. This serves to end the hormone's action and to absorb highly concentrated subcutaneously injected insulin in diabetic individuals. The former function may involve receptor-mediated transcytosis into lymphatic endothelial cells, the latter fluid phase uptake and paracellular transport. Lymphatic capillaries also mediate carrier-dependent transport of other nutrients and macromolecules. These findings challenge the notion that lymphatic capillaries only transport macromolecules through intercellular flaps.


Assuntos
Permeabilidade Capilar , Células Endoteliais/metabolismo , Insulina/metabolismo , Transcitose , Tecido Adiposo/metabolismo , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Humanos , Insulina/sangue , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo
8.
J Biol Chem ; 295(15): 4902-4911, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32132172

RESUMO

Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.


Assuntos
Tecido Adiposo/metabolismo , Conexinas/fisiologia , Inflamação/imunologia , Macrófagos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neutrófilos/metabolismo , Nucleotídeos/farmacologia , Palmitatos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Animais , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Resistência à Insulina , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia
9.
J Biol Chem ; 294(30): 11369-11381, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31175156

RESUMO

A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Animais , Transporte Biológico , Clonagem Molecular , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/metabolismo , Resistência à Insulina , Transdução de Sinais
10.
J Biol Chem ; 294(44): 16172-16185, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31515271

RESUMO

Connections between deficient autophagy and insulin resistance have emerged, however, the mechanism through which reduced autophagy impairs insulin-signaling remains unknown. We examined mouse embryonic fibroblasts lacking Atg16l1 (ATG16L1 KO mouse embryonic fibroblasts (MEFs)), an essential autophagy gene, and observed deficient insulin and insulin-like growth factor-1 signaling. ATG16L1 KO MEFs displayed reduced protein content of insulin receptor substrate-1 (IRS1), pivotal to insulin signaling, whereas IRS1myc overexpression recovered downstream insulin signaling. Endogenous IRS1 protein content and insulin signaling were restored in ATG16L1 KO mouse embryonic fibroblasts (MEF) upon proteasome inhibition. Through proximity-dependent biotin identification (BioID) and co-immunoprecipitation, we found that Kelch-like proteins KLHL9 and KLHL13, which together form an E3 ubiquitin (Ub) ligase complex with cullin 3 (CUL3), are novel IRS1 interactors. Expression of Klhl9 and Klhl13 was elevated in ATG16L1 KO MEFs and siRNA-mediated knockdown of Klhl9, Klhl13, or Cul3 recovered IRS1 expression. Moreover, Klhl13 and Cul3 knockdown increased insulin signaling. Notably, adipose tissue of high-fat fed mice displayed lower Atg16l1 mRNA expression and IRS1 protein content, and adipose tissue KLHL13 and CUL3 expression positively correlated to body mass index in humans. We propose that ATG16L1 deficiency evokes insulin resistance through induction of Klhl9 and Klhl13, which, in complex with Cul3, promote proteasomal IRS1 degradation.


Assuntos
Proteínas Relacionadas à Autofagia/deficiência , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Culina/metabolismo , Fibroblastos/metabolismo , Genes Reguladores , Células HEK293 , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/metabolismo , Transdução de Sinais , Complexos Ubiquitina-Proteína Ligase/metabolismo
11.
J Lipid Res ; 59(7): 1148-1163, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29794037

RESUMO

Ceramides contribute to obesity-linked insulin resistance and inflammation in vivo, but whether this is a cell-autonomous phenomenon is debated, particularly in muscle, which dictates whole-body glucose uptake. We comprehensively analyzed lipid species produced in response to fatty acids and examined the consequence to insulin resistance and pro-inflammatory pathways. L6 myotubes were incubated with BSA-adsorbed palmitate or palmitoleate in the presence of myriocin, fenretinide, or fumonisin B1. Lipid species were determined by lipidomic analysis. Insulin sensitivity was scored by Akt phosphorylation and glucose transporter 4 (GLUT4) translocation, while pro-inflammatory indices were estimated by IκBα degradation and cytokine expression. Palmitate, but not palmitoleate, had mild effects on Akt phosphorylation but significantly inhibited insulin-stimulated GLUT4 translocation and increased expression of pro-inflammatory cytokines Il6 and Ccl2 Ceramides, hexosylceramides, and sphingosine-1-phosphate significantly heightened by palmitate correlated negatively with insulin sensitivity and positively with pro-inflammatory indices. Inhibition of sphingolipid pathways led to marked changes in cellular lipids, but did not prevent palmitate-induced impairment of insulin-stimulated GLUT4 translocation, suggesting that palmitate-induced accumulation of deleterious lipids and insulin resistance are correlated but independent events in myotubes. We propose that muscle cell-endogenous ceramide production does not evoke insulin resistance and that deleterious effects of ceramides in vivo may arise through ancillary cell communication.


Assuntos
Ácidos Graxos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Músculos/metabolismo , Músculos/patologia , Transdução de Sinais , Esfingolipídeos/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , NF-kappa B/metabolismo , Ácido Palmítico/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
12.
Am J Physiol Endocrinol Metab ; 315(2): E204-E217, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509435

RESUMO

Whereas the blood microvasculature constitutes a biological barrier to the action of blood-borne insulin on target tissues, the lymphatic microvasculature might act as a barrier to subcutaneously administrated insulin reaching the circulation. Here, we evaluate the interaction of insulin with primary microvascular endothelial cells of lymphatic [human dermal lymphatic endothelial cells (HDLEC)] and blood [human adipose microvascular endothelial cells (HAMEC)] origin, derived from human dermal and adipose tissues, respectively. HDLEC express higher levels of insulin receptor and signal in response to insulin as low as 2.5 nM, while HAMEC only activate signaling at 100 nM (a dose that blood vessels do not normally encounter). Low insulin acts specifically through the insulin receptor, while supraphysiological insulin acts through both the IR and insulin growth factor-1 receptor. At supraphysiological or injection site-compatible doses pertinent to lymphatic microvessels, insulin enters HAMEC and HDLEC via fluid-phase endocytosis. Conversely, at physiologically circulating doses (0.2 nM) pertinent to blood microvessels, insulin enters HAMEC through a receptor-mediated process requiring IR autophosphorylation but not downstream insulin signaling. At physiological doses, internalized insulin is barely degraded and is instead released intact to the extracellular medium. In conclusion, we document for the first time the mechanism of interaction of insulin with lymphatic endothelial cells, which may be relevant to insulin absorption during therapeutic injections. Furthermore, we describe distinct action and uptake routes for insulin at physiological and supraphysiological doses in blood microvascular endothelial cells, providing a potential explanation for previously conflicting studies on endothelial insulin uptake.


Assuntos
Vasos Sanguíneos/citologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Vasos Linfáticos/citologia , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/citologia , Vasos Sanguíneos/metabolismo , Células Cultivadas , Endocitose/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Insulina/metabolismo , Vasos Linfáticos/metabolismo , Receptor de Insulina/metabolismo , Pele/citologia , Pele/efeitos dos fármacos
13.
Am J Physiol Endocrinol Metab ; 314(5): E478-E493, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089333

RESUMO

The signals mobilizing GLUT4 to the plasma membrane in response to muscle contraction are less known than those elicited by insulin. This disparity is undoubtedly due to lack of suitable in vitro models to study skeletal muscle contraction. We generated C2C12 myotubes stably expressing HA-tagged GLUT4 (C2C12-GLUT4 HA) that contract in response to electrical pulse stimulation (EPS) and investigated molecular mechanisms regulating GLUT4 HA. EPS (60 min, 20 V, 1 Hz, 24-ms pulses at 976-ms intervals) elicited a gain in surface GLUT4 HA (GLUT4 translocation) comparably to insulin or 5-amino imidazole-4-carboxamide ribonucleotide (AICAR). A myosin II inhibitor prevented EPS-stimulated myotube contraction and reduced surface GLUT4 by 56%. EPS stimulated AMPK and CaMKII phosphorylation, and EPS-stimulated GLUT4 translocation was reduced in part by small interfering (si)RNA-mediated AMPKα1/α2 knockdown, compound C, siRNA-mediated Ca2+/calmodulin-dependent protein kinase (CaMKII)δ knockdown, or CaMKII inhibitor KN93. Key regulatory residues on the Rab-GAPs AS160 and TBC1D1 were phosphorylated in response to EPS. Stable expression of an activated form of the Rab-GAP AS160 (AS160-4A) diminished EPS- and insulin-stimulated GLUT4 translocation, suggesting regulation of GLUT4 vesicle traffic by Rab GTPases. Knockdown of each Rab8a, Rab13, or Rab14 reduced, in part, GLUT4 translocation induced by EPS, whereas only Rab8a, or Rab14 knockdown reduced the AICAR response. In conclusion, EPS involves Rab8a, Rab13, and Rab14 to elicit GLUT4 translocation but not Rab10; moreover, Rab10 and Rab13 are not engaged by AMPK activation alone. C2C12-GLUT4 HA cultures constitute a valuable in vitro model to investigate molecular mechanisms of contraction-stimulated GLUT4 translocation.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Células Cultivadas , Estimulação Elétrica , Glucose/metabolismo , Camundongos , Contração Muscular/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genética , Proteínas rab de Ligação ao GTP/genética
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1653-1662, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29486284

RESUMO

Skeletal muscle plays a central role in insulin-controlled glucose homeostasis. The molecular mechanisms related to insulin resistance in this tissue are incompletely understood. Herpud1 is an endoplasmic reticulum membrane protein that maintains intracellular Ca2+ homeostasis under stress conditions. It has recently been reported that Herpud1-knockout mice display intolerance to a glucose load without showing altered insulin secretion. The functions of Herpud1 in skeletal muscle also remain unknown. Based on these findings, we propose that Herpud1 is necessary for insulin-dependent glucose disposal in skeletal muscle. Here we show that Herpud1 silencing decreased insulin-dependent glucose uptake, GLUT4 translocation to the plasma membrane, and Akt Ser473 phosphorylation in cultured L6 myotubes. A decrease in insulin-induced Akt Ser473 phosphorylation was observed in soleus but not in extensor digitorum longus muscle samples from Herpud1-knockout mice. Herpud1 knockdown increased the IP3R-dependent cytosolic Ca2+ response and the activity of Ca2+-dependent serine/threonine phosphatase calcineurin in L6 cells. Calcineurin decreased insulin-dependent Akt phosphorylation and glucose uptake. Moreover, calcineurin inhibition restored the insulin response in Herpud1-depleted L6 cells. Based on these findings, we conclude that Herpud1 is necessary for adequate insulin-induced glucose uptake due to its role in Ca2+/calcineurin regulation in L6 myotubes.


Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Calcineurina/genética , Glucose/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética
15.
Physiology (Bethesda) ; 31(5): 336-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27511460

RESUMO

Most research on insulin resistance has focused on impaired signaling at the level of target tissues like skeletal muscle. Insulin delivery is also important and includes recruitment and perfusion of capillaries bearing insulin, but also the transit of insulin across the capillary endothelium. The mechanisms of this second stage (insulin transcytosis) and whether it contributes to insulin resistance remain uncertain.


Assuntos
Células Endoteliais/fisiologia , Resistência à Insulina , Insulina/fisiologia , Músculo Esquelético/fisiopatologia , Transcitose , Animais , Permeabilidade Capilar , Humanos , Camundongos , Músculo Esquelético/irrigação sanguínea , Receptor de Insulina/fisiologia
17.
Am J Physiol Endocrinol Metab ; 312(4): E339-E347, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28196858

RESUMO

Over the past years, we have embarked in a systematic analysis of the effect of obesity or fatty acids on circulating monocytes, microvascular endothelial cells, macrophages, and skeletal muscle cells. With the use of cell culture strategies, we have deconstructed complex physiological systems and then reconstructed "partial equations" to better understand cell-to-cell communication. Through these approaches, we identified that in high saturated fat environments, cell-autonomous proinflammatory pathways are activated in monocytes and endothelial cells, promoting monocyte adhesion and transmigration. We think of this as a paradigm of the conditions promoting immune cell infiltration into tissues during obesity. In concert, it is possible that muscle and adipose tissue secrete immune cell chemoattractants, and indeed, our tissue culture reconstructions reveal that myotubes treated with the saturated fatty acid palmitate, but not the unsaturated fatty acid palmitoleate, release nucleotides that attract monocytes and other compounds that promote proinflammatory classically activated "(M1)-like" polarization in macrophages. In addition, palmitate directly triggers an M1-like macrophage phenotype, and secretions from these activated macrophages confer insulin resistance to target muscle cells. Together, these studies suggest that in pathophysiological conditions of excess fat, the muscle, endothelial and immune cells engage in a synergistic crosstalk that exacerbates tissue inflammation, leukocyte infiltration, polarization, and consequent insulin resistance.


Assuntos
Comunicação Celular/fisiologia , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Músculo Esquelético/citologia
18.
Biochim Biophys Acta Biomembr ; 1859(10): 1900-1910, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28648676

RESUMO

The rate of glucose influx to skeletal muscles is determined primarily by the number of functional units of glucose transporter-4 (GLUT4) in the myotube plasma membrane. The abundance of GLUT4 in the plasma membrane is tightly regulated by insulin or contractile activity, which employ distinct pathways to translocate GLUT4-rich vesicles from intracellular compartments. Various studies have indicated that GLUT4 intrinsic activity is also regulated by conformational changes and/or interactions with membrane components and intracellular proteins in the vicinity of the plasma membrane. Here we show that the non-metabolizable glucose analog 3-O-methyl-d-glucose (MeGlc) augmented the rate of hexose transport into myotubes by increasing GLUT4 intrinsic activity without altering the content of the transporter in the plasma membrane. This effect was not a consequence of ATP depletion or hyperosmolar stress and did not involve Akt/PKB or AMPK signal transduction pathways. MeGlc reduced the inhibitory potency (increased Ki) of indinavir, a selective inhibitor of GLUT4, in a dose-dependent manner. Kinetic analyses indicate that MeGlc induced changes in GLUT4 or GLUT4 complexes within the plasma membrane, which enhanced the hexose transport activity and reduced the potency of indinavir inhibition. Finally, we present a simple kinetic analysis for screening and discovering low molecular weight compounds that augment GLUT4 activity.


Assuntos
3-O-Metilglucose/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
J Physiol ; 594(17): 4997-5008, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27061726

RESUMO

KEY POINT: Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin-stimulated glucose uptake, although its role in exercise-stimulated glucose uptake is unknown. We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise. We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise. ABSTRACT: Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signalling mechanisms vital for glucose uptake during exercise are not yet fully understood, although the GTPase Rac1 is a candidate molecule. The present study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise-induced uptake of radiolabelled 2-deoxyglucose at 65% of maximum running capacity was blocked in soleus muscle and decreased by 80% and 60% in gastrocnemius and tibialis anterior muscles, respectively, in muscle-specific inducible Rac1 knockout (mKO) mice compared to wild-type littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 mKO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Neuropeptídeos/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Feminino , Masculino , Camundongos Knockout , Músculo Esquelético/fisiologia , Neuropeptídeos/genética , Ratos , Proteínas rac1 de Ligação ao GTP/genética
20.
J Biol Chem ; 290(27): 16979-88, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25987561

RESUMO

A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Polaridade Celular , Ácidos Graxos Monoinsaturados/imunologia , Macrófagos/imunologia , Obesidade/enzimologia , Obesidade/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa