Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 78(1): 180-190, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995127

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has been associated with mild cerebral dysfunction and cognitive decline, although the exact pathophysiological mechanism remains ambiguous. Using a diet-induced model of NAFLD and monocarboxylate transporter-1 (Mct1+/-) haploinsufficient mice, which resist high-fat diet-induced hepatic steatosis, we investigated the hypothesis that NAFLD leads to an encephalopathy by altering cognition, behaviour, and cerebral physiology. We also proposed that global MCT1 downregulation offers cerebral protection. METHODS: Behavioural tests were performed in mice following 16 weeks of control diet (normal chow) or high-fat diet with high fructose/glucose in water. Tissue oxygenation, cerebrovascular reactivity, and cerebral blood volume were monitored under anaesthesia by multispectral optoacoustic tomography and optical fluorescence. Cortical mitochondrial oxygen consumption and respiratory capacities were measured using ex vivo high-resolution respirometry. Microglial and astrocytic changes were evaluated by immunofluorescence and 3D reconstructions. Body composition was assessed using EchoMRI, and liver steatosis was confirmed by histology. RESULTS: NAFLD concomitant with obesity is associated with anxiety- and depression-related behaviour. Low-grade brain tissue hypoxia was observed, likely attributed to the low-grade brain inflammation and decreased cerebral blood volume. It is also accompanied by microglial and astrocytic morphological and metabolic alterations (higher oxygen consumption), suggesting the early stages of an obesogenic diet-induced encephalopathy. Mct1 haploinsufficient mice, despite fat accumulation in adipose tissue, were protected from NAFLD and associated cerebral alterations. CONCLUSIONS: This study provides evidence of compromised brain health in obesity and NAFLD, emphasising the importance of the liver-brain axis. The protective effect of Mct1 haploinsufficiency points to this protein as a novel therapeutic target for preventing and/or treating NAFLD and the associated brain dysfunction. IMPACT AND IMPLICATIONS: This study is focused on unravelling the pathophysiological mechanism by which cerebral dysfunction and cognitive decline occurs during NAFLD and exploring the potential of monocarboxylate transporter-1 (MCT1) as a novel preventive or therapeutic target. Our findings point to NAFLD as a serious health risk and its adverse impact on the brain as a potential global health system and economic burden. These results highlight the utility of Mct1 transgenic mice as a model for NAFLD and associated brain dysfunction and call for systematic screening by physicians for early signs of psychological symptoms, and an awareness by individuals at risk of these potential neurological effects. This study is expected to bring attention to the need for early diagnosis and treatment of NAFLD, while having a direct impact on policies worldwide regarding the health risk associated with NAFLD, and its prevention and treatment.


Assuntos
Encefalopatias , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Obesidade/metabolismo , Camundongos Transgênicos , Encefalopatias/metabolismo , Encefalopatias/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL
2.
Opt Lett ; 48(3): 648-651, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723554

RESUMO

Imaging modalities capable of visualizing the human brain have led to major advances in neurology and brain research. Multi-spectral optoacoustic tomography (MSOT) has gained importance for studying cerebral function in rodent models due to its unique capability to map changes in multiple hemodynamic parameters and to directly visualize neural activity within the brain. The technique further provides molecular imaging capabilities that can facilitate early disease diagnosis and treatment monitoring. However, transcranial imaging of the human brain is hampered by acoustic attenuation and other distortions introduced by the skull. Here, we demonstrate non-invasive transcranial MSOT angiography of pial veins through the temporal bone of an adult healthy volunteer. Time-of-flight (TOF) magnetic resonance angiography (MRA) and T1-weighted structural magnetic resonance imaging (MRI) were further acquired to facilitate anatomical registration and interpretation. The superior middle cerebral vein in the temporal cortex was identified in the MSOT images, matching its location observed in the TOF-MRA images. These initial results pave the way toward the application of MSOT in clinical brain imaging.


Assuntos
Encéfalo , Angiografia por Ressonância Magnética , Adulto , Humanos , Angiografia por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
3.
J Neuroinflammation ; 19(1): 290, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482445

RESUMO

BACKGROUND: The functional neurological outcome of patients with intracerebral hemorrhage (ICH) strongly relates to the degree of secondary brain injury (ICH-SBI) evolving within days after the initial bleeding. Different mechanisms including the incitement of inflammatory pathways, dysfunction of the blood-brain barrier (BBB), activation of resident microglia, and an influx of blood-borne immune cells, have been hypothesized to contribute to ICH-SBI. Yet, the spatiotemporal interplay of specific inflammatory processes within different brain compartments has not been sufficiently characterized, limiting potential therapeutic interventions to prevent and treat ICH-SBI. METHODS: We used a whole-blood injection model in mice, to systematically characterized the spatial and temporal dynamics of inflammatory processes after ICH using 7-Tesla magnetic resonance imaging (MRI), spatial RNA sequencing (spRNAseq), functional BBB assessment, and immunofluorescence average-intensity-mapping. RESULTS: We identified a pronounced early response of the choroid plexus (CP) peaking at 12-24 h that was characterized by inflammatory cytokine expression, epithelial and endothelial expression of leukocyte adhesion molecules, and the accumulation of leukocytes. In contrast, we observed a delayed secondary reaction pattern at the injection site (striatum) peaking at 96 h, defined by gene expression corresponding to perilesional leukocyte infiltration and correlating to the delayed signal alteration seen on MRI. Pathway analysis revealed a dependence of the early inflammatory reaction in the CP on toll-like receptor 4 (TLR4) signaling via myeloid differentiation factor 88 (MyD88). TLR4 and MyD88 knockout mice corroborated this observation, lacking the early upregulation of adhesion molecules and leukocyte infiltration within the CP 24 h after whole-blood injection. CONCLUSIONS: We report a biphasic brain reaction pattern after ICH with a MyD88-TLR4-dependent early inflammatory response of the CP, preceding inflammation, edema and leukocyte infiltration at the lesion site. Pharmacological targeting of the early CP activation might harbor the potential to modulate the development of ICH-SBI.


Assuntos
Edema Encefálico , Animais , Camundongos , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Fator 88 de Diferenciação Mieloide/genética , Plexo Corióideo/diagnóstico por imagem , Receptor 4 Toll-Like/genética , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem
4.
Eur J Nucl Med Mol Imaging ; 49(7): 2137-2152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35128565

RESUMO

PURPOSE: Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS: We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 µm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS: PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS: We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 µm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/metabolismo , Proteínas tau/metabolismo
5.
Eur J Nucl Med Mol Imaging ; 48(13): 4152-4170, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33594473

RESUMO

The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.


Assuntos
Neoplasias Encefálicas , Técnicas Fotoacústicas , Animais , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagem Molecular , Tomografia Computadorizada por Raios X
6.
Cell Mol Neurobiol ; 40(5): 765-766, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424770

RESUMO

The original version of the article unfortunately contained an error in the unit of the protein concentrations under 'Stereotactic Intraparenchymal Injections' subsection in 'Methods' section.

7.
Cell Mol Neurobiol ; 40(5): 751-764, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31858356

RESUMO

Pigment epithelium-derived factor (PEDF) is a neurotrophic factor with neuroprotective, antiangiogenic, and antipermeability effects. In the brain, blood-brain barrier (BBB) function is essential for homeostasis. Its impairment plays a crucial role in the pathophysiology of many neurological diseases, including ischemic stroke. We investigated (a) whether PEDF counteracted vascular endothelial growth factor (VEGF)-induced BBB disruption in the mouse brain, (b) the time course and route of BBB permeability and the dynamics of PEDF expression after cerebral ischemia, and (c) whether intraventricular infusion of PEDF ameliorated brain ischemia by reducing BBB impairment. C57Bl6/N mice received intraparenchymal injections of CSF, VEGF, or a combination of VEGF and PEDF. PEDF increased paracellular but not transcellular BBB integrity as indicated by an increase in the tight junction protein claudin-5. In another group of mice undergoing 60-min middle cerebral artery occlusion (MCAO), transcellular BBB permeability (fibrinogen staining in the absence of a loss of claudin-5) increased as early as 6 h after reperfusion. PEDF immunofluorescence increased at 24 h, which paralleled with a decreased paracellular BBB permeability (claudin-5). PEDF after MCAO originated from the blood stream and endogenous pericytes. In the third experiment, the intraventricular infusion of PEDF decreased edema and cell death after MCAO, potentially mediated by the improvement of the paracellular route of BBB permeability (claudin-5) in the absence of an amelioration of Evans Blue extravasation. Together, our data suggest that PEDF improves BBB function after cerebral ischemia by affecting the paracellular but not the transcellular route. However, further quantitative data of the different routes of BBB permeability will be required to validate our findings.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Proteínas do Olho/farmacologia , Ataque Isquêmico Transitório/terapia , Fatores de Crescimento Neural/farmacologia , Fármacos Neuroprotetores/farmacologia , Serpinas/farmacologia , Animais , Barreira Hematoencefálica/lesões , Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/uso terapêutico , Ataque Isquêmico Transitório/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Serpinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
Brain ; 142(4): 885-902, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30805583

RESUMO

Brain calcifications are commonly detected in aged individuals and accompany numerous brain diseases, but their functional importance is not understood. In cases of primary familial brain calcification, an autosomally inherited neuropsychiatric disorder, the presence of bilateral brain calcifications in the absence of secondary causes of brain calcification is a diagnostic criterion. To date, mutations in five genes including solute carrier 20 member 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), myogenesis regulating glycosidase (MYORG), platelet-derived growth factor B (PDGFB) and platelet-derived growth factor receptor ß (PDGFRB), are considered causal. Previously, we have reported that mutations in PDGFB in humans are associated with primary familial brain calcification, and mice hypomorphic for PDGFB (Pdgfbret/ret) present with brain vessel calcifications in the deep regions of the brain that increase with age, mimicking the pathology observed in human mutation carriers. In this study, we characterize the cellular environment surrounding calcifications in Pdgfbret/ret animals and show that cells around vessel-associated calcifications express markers for osteoblasts, osteoclasts and osteocytes, and that bone matrix proteins are present in vessel-associated calcifications. Additionally, we also demonstrate the osteogenic environment around brain calcifications in genetically confirmed primary familial brain calcification cases. We show that calcifications cause oxidative stress in astrocytes and evoke expression of neurotoxic astrocyte markers. Similar to previously reported human primary familial brain calcification cases, we describe high interindividual variation in calcification load in Pdgfbret/ret animals, as assessed by ex vivo and in vivo quantification of calcifications. We also report that serum of Pdgfbret/ret animals does not differ in calcification propensity from control animals and that vessel calcification occurs only in the brains of Pdgfbret/ret animals. Notably, ossification of vessels and astrocytic neurotoxic response is associated with specific behavioural and cognitive alterations, some of which are associated with primary familial brain calcification in a subset of patients.


Assuntos
Astrócitos/metabolismo , Ossificação Heterotópica/patologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Idoso , Animais , Encéfalo/patologia , Encefalopatias/genética , Calcinose/patologia , Feminino , Humanos , Masculino , Camundongos , Mutação , Osteogênese/fisiologia , Estresse Oxidativo , Linhagem , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Receptor do Retrovírus Politrópico e Xenotrópico
9.
MAGMA ; 33(6): 769-781, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32468149

RESUMO

OBJECTIVE: Brain calcifications are associated with several neurodegenerative diseases. Here, we describe the occurrence of intracranial calcifications as a new phenotype in transgenic P301L mice overexpressing four repeat tau, a model of human tauopathy. MATERIALS AND METHODS: Thirty-six P301L mice (Thy1.2) and ten age-matched non-transgenic littermates of different ages were assessed. Gradient echo data were acquired in vivo and ex vivo at 7 T and 9.4 T for susceptibility-weighted imaging (SWI) and phase imaging. In addition, ex vivo micro-computed tomography (µCT) was performed. Histochemistry and immunohistochemistry were used to investigate the nature of the imaging lesions. RESULTS: SW images revealed regional hypointensities in the hippocampus, cortex, caudate nucleus, and thalamus of P301L mice, which in corresponding phase images indicated diamagnetic lesions. Concomitantly, µCT detected hyperdense lesions, though fewer lesions were observed compared to MRI. Diamagnetic susceptibility lesions in the hippocampus increased with age. The immunochemical staining of brain sections revealed osteocalcin-positive deposits. Furthermore, intra-neuronal and vessel-associated osteocalcin-containing nodules co-localized with phosphorylated-tau (AT8 and AT100) in the hippocampus, while vascular osteocalcin-containing nodules were detected in the thalamus in the absence of phosphorylated-tau deposition. DISCUSSION: SWI and phase imaging sensitively detected intracranial calcifications in the P301L mouse model of human tauopathy.


Assuntos
Tauopatias , Proteínas tau , Animais , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Tauopatias/diagnóstico por imagem , Microtomografia por Raio-X
10.
Neurodegener Dis ; 20(5-6): 173-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33975312

RESUMO

INTRODUCTION: Increased expression of hyperphosphorylated tau and the formation of neurofibrillary tangles are associated with neuronal loss and white matter damage. Using high-resolution ex vivo diffusion tensor imaging (DTI), we investigated microstructural changes in the white and grey matter in the P301L mouse model of human tauopathy at 8.5 months of age. For unbiased computational analysis, we implemented a pipeline for voxel-based analysis (VBA) and atlas-based analysis (ABA) of DTI mouse brain data. METHODS: Hemizygous and homozygous transgenic P301L mice and non-transgenic littermates were used. DTI data were acquired for generation of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) maps. VBA on the entire brain was performed using SPM8 and the SPM Mouse toolbox. Initially, all DTI maps were coregistered with the Allen mouse brain atlas to bring them to one common coordinate space. In VBA, coregistered DTI maps were normalized and smoothed in order to perform two-sample and unpaired t tests with false discovery rate correction to compare hemizygotes with non-transgenic littermates, homozygotes with non-transgenic littermates, and hemizygotes with homozygotes on each DTI parameter map. In ABA, the average values for selected regions of interests were computed with coregistered DTI maps and labels in Allen mouse brain atlas. Afterwards, a Kruskal-Wallis one-way ANOVA on ranks with a Tukey post hoc test was executed on the estimated average values. RESULTS: With VBA, we found pronounced and brain-wide spread changes when comparing homozygous, P301L mice with non-transgenic littermates, which were not seen when comparing hemizygous P301L with non-transgenic animals. Statistical comparison of DTI metrics in selected brain regions by ABA corroborated findings from VBA. FA was found to be decreased in most brain regions, while MD, RD, and AD were increased in homozygotes compared to hemizygotes and non-transgenic littermates. DISCUSSION/CONCLUSION: High-resolution ex vivo DTI demonstrated brain-wide microstructural and gene-dose-dependent changes in the P301L mouse model of human tauopathy. The DTI analysis pipeline may serve for the phenotyping of models of tauopathy and other brain diseases.

11.
Neurodegener Dis ; 19(3-4): 109-127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32062666

RESUMO

BACKGROUND: Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD). It is believed to contribute additively to the cognitive impairment and to lower the threshold for the development of dementia. However, accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Vascular processes even proceed AD neuropathology, implicating a causal role in the etiology of AD. Thus, the review aims to provide an integrated view on vascular dysfunction in AD. SUMMARY: In AD, the cerebral vasculature undergoes pronounced cellular, morphological and structural changes, which alters regulation of blood flow, vascular fluid dynamics and vessel integrity. Stiffening of central blood vessels lead to transmission of excessive pulsatile energy to the brain microvasculature, causing end-organ damage. Moreover, a dysregulated hemostasis and chronic vascular inflammation further impede vascular function, where its mediators interact synergistically. Changes of the cerebral vasculature are triggered and driven by systemic vascular abnormalities that are part of aging, and which can be accelerated and aggravated by cardiovascular diseases. Key Messages: In AD, the cerebral vasculature is the locus where multiple pathogenic processes converge and contribute to cognitive impairment. Understanding the molecular mechanism and pathophysiology of vascular dysfunction in AD and use of vascular blood-based and imaging biomarker in clinical studies may hold promise for future prevention and therapy of the disease.


Assuntos
Doença de Alzheimer/patologia , Transtornos Cerebrovasculares/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Humanos
12.
J Neurosci ; 34(41): 13780-9, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297104

RESUMO

Impairment of brain functional connectivity (FC) is thought to be an early event occurring in diseases with cerebral amyloidosis, such as Alzheimer's disease. Regions sustaining altered functional networks have been shown to colocalize with regions marked with amyloid plaques burden suggesting a strong link between FC and amyloidosis. Whether the decline in FC precedes amyloid plaque deposition or is a consequence thereof is currently unknown. The sequence of events during early stages of the disease is difficult to capture in humans due to the difficulties in providing an early diagnosis and also in view of the heterogeneity among patients. Transgenic mouse lines overexpressing amyloid precursor proteins develop cerebral amyloidosis and constitute an attractive model system for studying the relationship between plaque and functional changes. In this study, ArcAß transgenic and wild-type mice were imaged using resting-state fMRI methods across their life-span in a cross-sectional design to analyze changes in FC in relation to the pathology. Transgenic mice show compromised development of FC during the first months of postnatal life compared with wild-type animals, resulting in functional impairments that affect in particular the sensory-motor cortex already in preplaque stage. These functional alterations were accompanied by structural changes as reflected by reduced fractional anisotropy values, as derived from diffusion tensor imaging. Our results suggest cerebral amyloidosis in mice is preceded by impairment of neuronal networks and white matter structures. FC analysis in mice is an attractive tool for studying the implications of impaired neuronal networks in models of cerebral amyloid pathology.


Assuntos
Amiloidose/patologia , Vias Neurais/fisiologia , Substância Branca/anatomia & histologia , Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Amiloidose/genética , Animais , Anisotropia , Feminino , Genótipo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/patologia , Substância Branca/crescimento & desenvolvimento
13.
J Neurosci ; 32(5): 1705-13, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22302811

RESUMO

Amyloid-ß (Aß) deposition in the cerebral vasculature is accompanied by remodeling which has a profound influence on vascular integrity and function. In the current study we have quantitatively assessed the age-dependent changes of the cortical vasculature in the arcAß model of cerebral amyloidosis. To estimate the density of the cortical microvasculature in vivo, we used contrast-enhanced magnetic resonance microangiography (CE-µMRA). Three-dimensional gradient echo datasets with 60 µm isotropic resolution were acquired in 4- and 24-month-old arcAß mice and compared with wild-type (wt) control mice of the same age before and after administration of superparamagnetic iron oxide nanoparticles. After segmentation of the cortical vasculature from difference images, an automated algorithm was applied for assessing the number and size distribution of intracortical vessels. With CE-µMRA, cerebral arteries and veins with a diameter of less than the nominal pixel resolution (60 µm) can be visualized. A significant age-dependent reduction in the number of functional intracortical microvessels (radii of 20-80 µm) has been observed in 24-month-old arcAß mice compared with age-matched wt mice, whereas there was no difference between transgenic and wt mice of 4 months of age. Immunohistochemistry demonstrated strong fibrinogen and Aß deposition in small- and medium-sized vessels, but not in large cerebral arteries, of 24-month-old arcAß mice. The reduced density of transcortical vessels may thus be attributed to impaired perfusion and vascular occlusion caused by deposition of Aß and fibrin. The study demonstrated that remodeling of the cerebrovasculature can be monitored noninvasively with CE-µMRA in mice.


Assuntos
Peptídeos beta-Amiloides/genética , Circulação Cerebrovascular/genética , Meios de Contraste , Proteínas do Citoesqueleto/genética , Angiografia por Ressonância Magnética/métodos , Microvasos/fisiologia , Proteínas do Tecido Nervoso/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/fisiopatologia , Proteínas do Citoesqueleto/metabolismo , Feminino , Fibrinogênio/genética , Fibrinogênio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microvasos/diagnóstico por imagem , Proteínas do Tecido Nervoso/metabolismo , Radiografia
14.
Brain Pathol ; 33(1): e13099, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698024

RESUMO

Cerebral ischemia is the leading cause for long-term disability and mortality in adults due to massive neuronal death. Currently, there is no pharmacological treatment available to limit progressive neuronal death after stroke. A major mechanism causing ischemia-induced neuronal death is the excessive release of glutamate and the associated overexcitation of neurons (excitotoxicity). Normally, GABAB receptors control neuronal excitability in the brain via prolonged inhibition. However, excitotoxic conditions rapidly downregulate GABAB receptors via a CaMKII-mediated mechanism and thereby diminish adequate inhibition that could counteract neuronal overexcitation and neuronal death. To prevent the deleterious downregulation of GABAB receptors, we developed a cell-penetrating synthetic peptide (R1-Pep) that inhibits the interaction of GABAB receptors with CaMKII. Administration of this peptide to cultured cortical neurons exposed to excitotoxic conditions restored cell surface expression and function of GABAB receptors. R1-Pep did not affect CaMKII expression or activity but prevented its T286 autophosphorylation that renders it autonomously and persistently active. Moreover, R1-Pep counteracted the aberrant downregulation of G protein-coupled inwardly rectifying K+ channels and the upregulation of N-type voltage-gated Ca2+ channels, the main effectors of GABAB receptors. The restoration of GABAB receptors activated the Akt survival pathway and inhibited excitotoxic neuronal death with a wide time window in cultured neurons. Restoration of GABAB receptors and neuroprotective activity of R1-Pep was verified by using brain slices prepared from mice after middle cerebral artery occlusion (MCAO). Treatment with R1-Pep restored normal GABAB receptor expression and GABA receptor-mediated K+ channel currents. This reduced MCAO-induced neuronal excitability and inhibited neuronal death. These results support the hypothesis that restoration of GABAB receptor expression under excitatory conditions provides neuroprotection and might be the basis for the development of a selective intervention to inhibit progressive neuronal death after ischemic stroke.


Assuntos
Isquemia Encefálica , Receptores de GABA-B , Camundongos , Animais , Receptores de GABA-B/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Peptídeos , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
Life Sci ; 321: 121593, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934970

RESUMO

AIMS: Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aß) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aß. MATERIALS AND METHODS: Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAß mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aß in brain tissue slices from pR5, arcAß and non-transgenic mice. KEY FINDINGS: pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAß mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAß mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aß plaques in arcAß mice. SIGNIFICANCE: We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAß mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aß pathologies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Aquaporina 4 , Proteínas tau , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/patologia , Proteínas tau/metabolismo
16.
J Cereb Blood Flow Metab ; 43(5): 763-777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36545806

RESUMO

Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2 and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations.


Assuntos
Células Endoteliais , Pericitos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-sis/metabolismo , Pericitos/metabolismo , Modelos Animais de Doenças , Becaplermina/metabolismo , Hemodinâmica , Oxigênio/metabolismo
17.
Photoacoustics ; 32: 100532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37645255

RESUMO

Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.

18.
Acta Biomater ; 170: 260-272, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574159

RESUMO

Amyloid-ß (Aß) plaques from Alzheimer's Disease (AD) can be visualized ex vivo in label-free brain samples using synchrotron X-ray phase-contrast tomography (XPCT). However, for XPCT to be useful as a screening method for amyloid pathology, it is essential to understand which factors drive the detection of Aß plaques. The current study was designed to test the hypothesis that Aß-related contrast in XPCT could be caused by Aß fibrils and/or by metals trapped in the plaques. Fibrillar and elemental compositions of Aß plaques were probed in brain samples from different types of AD patients and AD models to establish a relationship between XPCT contrast and Aß plaque characteristics. XPCT, micro-Fourier-Transform Infrared spectroscopy and micro-X-Ray Fluorescence spectroscopy were conducted on human samples (one genetic and one sporadic case) and on four transgenic rodent strains (mouse: APPPS1, ArcAß, J20; rat: TgF344). Aß plaques from the genetic AD patient were visible using XPCT, and had higher ß-sheet content and higher metal levels than those from the sporadic AD patient, which remained undetected by XPCT. Aß plaques in J20 mice and TgF344 rats appeared hyperdense on XPCT images, while they were hypodense with a hyperdense core in the case of APPPS1 and ArcAß mice. In all four transgenic strains, ß-sheet content was similar, while metal levels were highly variable: J20 (zinc and iron) and TgF344 (copper) strains showed greater metal accumulation than APPPS1 and ArcAß mice. Hence, a hyperdense contrast formation of Aß plaques in XPCT images was associated with biometal entrapment within plaques. STATEMENT OF SIGNIFICANCE: The role of metals in Alzheimer's disease (AD) has been a subject of continuous interest. It was already known that amyloid-ß plaques (Aß), the earliest hallmark of AD, tend to trap endogenous biometals like zinc, iron and copper. Here we show that this metal accumulation is the main reason why Aß plaques are detected with a new technique called X-ray phase contrast tomography (XPCT). XPCT enables to map the distribution of Aß plaques in the whole excised brain without labeling. In this work we describe a unique collection of four transgenic models of AD, together with a human sporadic and a rare genetic case of AD, thus exploring the full spectrum of amyloid contrast in XPCT.


Assuntos
Doença de Alzheimer , Oligoelementos , Humanos , Camundongos , Animais , Ratos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cobre/química , Raios X , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Metais , Zinco/química , Ferro , Encéfalo/metabolismo , Amiloide , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/química , Modelos Animais de Doenças
19.
Front Aging Neurosci ; 14: 825996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585865

RESUMO

In primary tauopathies, the deposition of tau neurofibrillary tangles and threads as well as neurodegenerative changes have been found within the brain and spinal cord. While degenerative changes have been intensively studied in the brain using structural magnetic resonance imaging (MRI), MRI studies investigating the spinal cord are still scarce. In the present study, we acquired ex vivo high resolution structural MRI of the cervical spinal cord of 8.5-9 month old hemizygous and homozygous P301L mice and non-transgenic littermates of both genders. We assessed the total cross-sectional area, and the gray and white matter anterior-posterior width and left-right width that are established imaging marker of spinal cord degeneration. We observed significant tissue-specific reductions in these parameters in female P301L mice that were stronger in homozygous than in hemizygous P301L mice, indicating both an effect of gender and transgene expression on cervical spinal cord atrophy. Moreover, atrophy was stronger in the gray matter than in the white matter. Immunohistochemical analysis revealed neurodegenerative and neuroinflammatory changes in the cervical spinal cord in both the gray and white matter of P301L mice. Collectively, our results provide evidence for cervical spinal cord atrophy that may directly contribute to the motor signs associated with tauopathy.

20.
J Cereb Blood Flow Metab ; 42(4): 686-693, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34822744

RESUMO

There is growing evidence for the vascular contribution to cognitive impairment and dementia in Alzheimer's disease (AD) and other neurodegenerative diseases. While perfusion deficits have been observed in patients with Alzheimer's disease and tauopaties, little is known about the role of tau in vascular dysfunction. In the present study, regional cerebral blood (rCBF) was characterized in P301L mice with arterial spin labeling. No differences in rCBF in P301L mice compared to their age-matched non-transgenic littermates at mid (10-12 months of age) and advanced (19-21 months of age) disease stages. This was concomitant with preservation of cortical brain structure as assessed with structural T2-weighted magnetic resonance imaging. These results show that hypoperfusion and neurodegeneration are not a phenotype of P301L mice. More studies are thus needed to understand the relationship of tau, neurodegeneration and vascular dysfunction and its modulators in AD and primary tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Circulação Cerebrovascular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Marcadores de Spin , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa