Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 25(1): 125-134, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350326

RESUMO

PURPOSE: For patients with inherited metabolic disorders (IMDs), any diagnostic delay should be avoided because early initiation of personalized treatment could prevent irreversible health damage. To improve diagnostic interpretation of genetic data, gene function tests can be valuable assets. For IMDs, variant-transcending functional tests are readily available through (un)targeted metabolomics assays. To support the application of metabolomics for this purpose, we developed a gene-based guide to select functional tests to either confirm or exclude an IMD diagnosis. METHODS: Using information from a diagnostic IMD exome panel, Kyoto Encyclopedia of Genes and Genomes, and Inborn Errors of Metabolism Knowledgebase, we compiled a guide for metabolomics-based gene function tests. From our practical experience with this guide, we retrospectively selected illustrative cases for whom combined metabolomic/genomic testing improved diagnostic success and evaluated the effect hereof on clinical management. RESULTS: The guide contains 2047 metabolism-associated genes for which a validated or putative variant-transcending gene function test is available. We present 16 patients for whom metabolomic testing either confirmed or ruled out the presence of a second pathogenic variant, validated or ruled out pathogenicity of variants of uncertain significance, or identified a diagnosis initially missed by genetic analysis. CONCLUSION: Metabolomics-based gene function tests provide additional value in the diagnostic trajectory of patients with suspected IMD by enhancing and accelerating diagnostic success.


Assuntos
Diagnóstico Tardio , Doenças Metabólicas , Humanos , Estudos Retrospectivos , Metabolômica , Biomarcadores
2.
Am J Hum Genet ; 105(3): 534-548, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422819

RESUMO

Early-infantile encephalopathies with epilepsy are devastating conditions mandating an accurate diagnosis to guide proper management. Whole-exome sequencing was used to investigate the disease etiology in four children from independent families with intellectual disability and epilepsy, revealing bi-allelic GOT2 mutations. In-depth metabolic studies in individual 1 showed low plasma serine, hypercitrullinemia, hyperlactatemia, and hyperammonemia. The epilepsy was serine and pyridoxine responsive. Functional consequences of observed mutations were tested by measuring enzyme activity and by cell and animal models. Zebrafish and mouse models were used to validate brain developmental and functional defects and to test therapeutic strategies. GOT2 encodes the mitochondrial glutamate oxaloacetate transaminase. GOT2 enzyme activity was deficient in fibroblasts with bi-allelic mutations. GOT2, a member of the malate-aspartate shuttle, plays an essential role in the intracellular NAD(H) redox balance. De novo serine biosynthesis was impaired in fibroblasts with GOT2 mutations and GOT2-knockout HEK293 cells. Correcting the highly oxidized cytosolic NAD-redox state by pyruvate supplementation restored serine biosynthesis in GOT2-deficient cells. Knockdown of got2a in zebrafish resulted in a brain developmental defect associated with seizure-like electroencephalography spikes, which could be rescued by supplying pyridoxine in embryo water. Both pyridoxine and serine synergistically rescued embryonic developmental defects in zebrafish got2a morphants. The two treated individuals reacted favorably to their treatment. Our data provide a mechanistic basis for the biochemical abnormalities in GOT2 deficiency that may also hold for other MAS defects.


Assuntos
Alelos , Ácido Aspártico/metabolismo , Encefalopatias/genética , Proteínas de Ligação a Ácido Graxo/genética , Malatos/metabolismo , Mutação , Animais , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Sequenciamento do Exoma
3.
Anal Chem ; 93(46): 15340-15348, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34756024

RESUMO

Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics strategies are being increasingly applied in metabolite screening for a wide variety of medical conditions. The long-standing "grand challenge" in the utilization of this approach is metabolite identification─confidently determining the chemical structures of m/z-detected unknowns. Here, we use a novel workflow based on the detection of molecular features of interest by high-throughput untargeted LC-MS analysis of patient body fluids combined with targeted molecular identification of those features using infrared ion spectroscopy (IRIS), effectively providing diagnostic IR fingerprints for mass-isolated targets. A significant advantage of this approach is that in silico-predicted IR spectra of candidate chemical structures can be used to suggest the molecular structure of unknown features, thus mitigating the need for the synthesis of a broad range of physical reference standards. Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine metabolism, resulting from a mutation in the ALDH7A1 gene that leads to an accumulation of toxic levels of α-aminoadipic semialdehyde (α-AASA), piperideine-6-carboxylate (P6C), and pipecolic acid in body fluids. While α-AASA and P6C are known biomarkers for PDE in urine, their instability makes them poor candidates for diagnostic analysis from blood, which would be required for application in newborn screening protocols. Here, we use combined untargeted metabolomics-IRIS to identify several new biomarkers for PDE-ALDH7A1 that can be used for diagnostic analysis in urine, plasma, and cerebrospinal fluids and that are compatible with analysis in dried blood spots for newborn screening. The identification of these novel metabolites has directly provided novel insights into the pathophysiology of PDE-ALDH7A1.


Assuntos
Epilepsia , Aldeído Desidrogenase , Biomarcadores , Cromatografia Líquida , Epilepsia/diagnóstico , Humanos , Recém-Nascido , Metabolômica
4.
Genet Med ; 23(3): 581-585, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087887

RESUMO

PURPOSE: The 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants provide a framework to standardize terminology in the classification of variants uncovered through genetic testing. We aimed to assess the validity of utilizing clinical response to therapies specifically targeted to a suspected disease in clarifying variant pathogenicity. METHODS: Five families with disparate clinical presentations and different genetic diseases evaluated and treated in multiple diagnostic settings are summarized. RESULTS: Extended evaluations indicated possible genetic diagnoses and assigned candidate causal variants, but the cumulative clinical, biochemical, and molecular information in each instance was not completely consistent with the identified disease. Initiation of treatment specific to the suspected diagnoses in the affected individuals led to clinical improvement in all five families. CONCLUSION: We propose that the effect of therapies that are specific and targeted to treatable genetic diseases embodies an in vivo physiological response and could be considered as additional criteria within the 2015 ACMG/AMP guidelines in determining genomic variant pathogenicity.


Assuntos
Variação Genética , Genoma Humano , Testes Genéticos , Genoma Humano/genética , Genômica , Humanos , Análise de Sequência de DNA , Virulência
5.
Metabolomics ; 16(5): 64, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358672

RESUMO

INTRODUCTION: When analyzing the human plasma metabolome with Nuclear Magnetic Resonance (NMR) spectroscopy, the Carr-Purcell-Meiboom-Gill (CPMG) experiment is commonly employed for large studies. However, this process can lead to compromised statistical analyses due to residual macromolecule signals. In addition, the utilization of Trimethylsilylpropanoic acid (TSP) as an internal standard often leads to quantification issues, and binning, as a spectral summarization step, can result in features not clearly assignable to metabolites. OBJECTIVES: Our aim was to establish a new complete protocol for large plasma cohorts collected with the purpose of describing the comparative metabolic profile of groups of samples. METHODS: We compared the conventional CPMG approach to a novel procedure that involves diffusion NMR, using the Longitudinal Eddy-Current Delay (LED) experiment, maleic acid (MA) as the quantification reference and peak picking for spectral reduction. This comparison was carried out using the ultrafiltration method as a gold standard in a simple sample classification experiment, with Partial Least Squares-Discriminant Analysis (PLS-DA) and the resulting metabolic signatures for multivariate data analysis. In addition, the quantification capabilities of the method were evaluated. RESULTS: We found that the LED method applied was able to detect more metabolites than CPMG and suppress macromolecule signals more efficiently. The complete protocol was able to yield PLS-DA models with enhanced classification accuracy as well as a more reliable set of important features than the conventional CPMG approach. Assessment of the quantitative capabilities of the method resulted in good linearity, recovery and agreement with an established amino acid assay for the majority of the metabolites tested. Regarding repeatability, ~ 85% of all peaks had an adequately low coefficient of variation (< 30%) in replicate samples. CONCLUSION: Overall, our comparison yielded a high-throughput untargeted plasma NMR protocol for optimized data acquisition and processing that is expected to be a valuable contribution in the field of metabolic biomarker discovery.


Assuntos
Ensaios de Triagem em Larga Escala , Maleatos/sangue , Metabolômica , Biomarcadores/sangue , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Análise Multivariada
6.
Metabolomics ; 16(6): 67, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32435922

RESUMO

Following publication of the original article, the authors would like to correct a sentence in the paragraph "1H-NMR spectra were recorded at 298 K…" under the heading "NMR experiments".

7.
Mol Genet Metab ; 123(1): 28-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331171

RESUMO

BACKGROUND: Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). MATERIAL AND METHODS: Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. RESULTS: For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. CONCLUSION: MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Encefalopatia Hepática/genética , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/genética , Adolescente , Biópsia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Feminino , Mutação da Fase de Leitura , Encefalopatia Hepática/diagnóstico por imagem , Encefalopatia Hepática/fisiopatologia , Humanos , Lactente , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/diagnóstico por imagem , Erros Inatos do Metabolismo/fisiopatologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Fosforilação Oxidativa , Proteínas de Ligação a RNA
8.
J Inherit Metab Dis ; 41(3): 367-377, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29556837

RESUMO

The identification of molecular biomarkers is critical for diagnosing and treating patients and for establishing a fundamental understanding of the pathophysiology and underlying biochemistry of inborn errors of metabolism. Currently, liquid chromatography/high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy are the principle methods used for biomarker research and for structural elucidation of small molecules in patient body fluids. While both are powerful techniques, several limitations exist that often make the identification of unknown compounds challenging. Here, we describe how infrared ion spectroscopy has the potential to be a valuable orthogonal technique that provides highly-specific molecular structure information while maintaining ultra-high sensitivity. Here, we characterize and distinguish two well-known biomarkers of inborn errors of metabolism, glutaric acid for glutaric aciduria and ethylmalonic acid for short-chain acyl-CoA dehydrogenase deficiency, using infrared ion spectroscopy. In contrast to tandem mass spectra, in which ion fragments can hardly be predicted, we show that the prediction of an IR spectrum allows reference-free identification in the case that standard compounds are either commercially or synthetically unavailable. Finally, we illustrate how functional group information can be obtained from an IR spectrum for an unknown and how this is valuable information to, for example, narrow down a list of candidate structures resulting from a database query. Early diagnosis in inborn errors of metabolism is crucial for enabling treatment and depends on the identification of biomarkers specific for the disorder. Infrared ion spectroscopy has the potential to play a pivotal role in the identification of challenging biomarkers.


Assuntos
Biomarcadores/análise , Erros Inatos do Metabolismo/diagnóstico , Metaboloma/fisiologia , Biomarcadores/metabolismo , Humanos , Erros Inatos do Metabolismo/metabolismo , Espectrofotometria Infravermelho
9.
J Inherit Metab Dis ; 41(4): 641-646, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28894950

RESUMO

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is an autosomal recessively inherited inborn error of metabolism (IEM) due to mutations in the CYP27A1 gene. The clinical picture ranges from being nearly asymptomatic in early childhood, up to severe disability at adult age. Infantile-onset diarrhea and juvenile-onset cataract are the earliest symptoms in childhood. In the current study, we evaluated the presence of autism spectrum disorder (ASD) in a large cohort of CTX patients. METHODS: We performed a retrospective patient file study in 77 genetically confirmed Dutch CTX patients to determine the frequency of ASD. In addition, we compared plasma cholestanol levels in CTX patients with and without a diagnosis of ASD and tried to establish a relation between CYP27A1 genotype and ASD. RESULTS: In our CTX cohort, 10 patients (13%; nine pediatric and one adult) with ASD were identified. At the time of diagnosis of ASD, most patients only exhibited symptoms of diarrhea and/or intellectual disability without signs of cataract or neurological symptoms. No correlation was found between the presence of ASD and the level of cholestanol or CYP27A1 genotype. The behavioral problems stabilized or improved after treatment initiation with chenodeoxycholic acid (CDCA) in all pediatric patients. CONCLUSIONS: We conclude that ASD is an early and probably underestimated frequent feature in CTX. Metabolic screening for CTX should be performed in patients with ASD when accompanied by diarrhea, intellectual disability, juvenile cataract, and/or neurological involvement. Early recognition allows for earlier initiation of specific treatment and will improve clinical outcome. Our results add CTX to the list of treatable IEMs associated with ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Xantomatose Cerebrotendinosa/diagnóstico , Adolescente , Adulto , Transtorno do Espectro Autista/sangue , Catarata/etiologia , Ácido Quenodesoxicólico/uso terapêutico , Criança , Pré-Escolar , Colestanol/sangue , Diarreia/etiologia , Feminino , Humanos , Deficiência Intelectual/etiologia , Masculino , Estudos Retrospectivos , Xantomatose Cerebrotendinosa/sangue , Xantomatose Cerebrotendinosa/tratamento farmacológico , Adulto Jovem
10.
J Inherit Metab Dis ; 41(3): 415-424, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29435781

RESUMO

Since organic acid analysis in urine with gaschromatography-mass spectrometry (GC-MS) is a time-consuming technique, we developed a new liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) method to replace the classical analysis for diagnosis of inborn errors of metabolism (IEM). Sample preparation is simple and experimental time short. Targeted mass extraction and automatic calculation of z-scores generated profiles characteristic for the IEMs in our panel consisting of 71 biomarkers for defects in amino acids, neurotransmitters, fatty acids, purine, and pyrimidine metabolism as well as other disorders. In addition, four medication-related metabolites were included in the panel. The method was validated to meet Dutch NEN-EN-ISO 15189 standards. Cross validation of 24 organic acids from 28 urine samples of the ERNDIM scheme showed superiority of the UPLC-QTOF/MS method over the GC-MS method. We applied our method to 99 patient urine samples with 32 different IEMs, and 88 control samples. All IEMs were unambiguously established/diagnosed using this new QTOF method by evaluation of the panel of 71 biomarkers. In conclusion, we present a LC-QTOF/MS method for fast and accurate quantitative organic acid analysis which facilitates screening of patients for IEMs. Extension of the panel of metabolites is easy which makes this application a promising technique in metabolic diagnostics/laboratories.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Erros Inatos do Metabolismo/diagnóstico , Espectrometria de Massas em Tandem/métodos , Urinálise/métodos , Aminoácidos/análise , Aminoácidos/urina , Cromatografia Líquida/métodos , Ácidos Graxos/análise , Ácidos Graxos/urina , Feminino , Humanos , Masculino , Programas de Rastreamento/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
11.
J Inherit Metab Dis ; 41(3): 407-414, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29139026

RESUMO

Specific diagnostic markers are the key to effective diagnosis and treatment of inborn errors of metabolism (IEM). Untargeted metabolomics allows for the identification of potential novel diagnostic biomarkers. Current separation techniques coupled to high-resolution mass spectrometry provide a powerful tool for structural elucidation of unknown compounds in complex biological matrices. This is a proof-of-concept study testing this methodology to determine the molecular structure of as yet uncharacterized m/z signals that were significantly increased in plasma samples from patients with phenylketonuria and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. A hybrid linear ion trap-orbitrap high resolution mass spectrometer, capable of multistage fragmentation, was used to acquire accurate masses and product ion spectra of the uncharacterized m/z signals. In order to determine the molecular structures, spectral databases were searched and fragmentation prediction software was used. This approach enabled structural elucidation of novel compounds potentially useful as biomarkers in diagnostics and follow-up of IEM patients. Two new conjugates, glutamyl-glutamyl-phenylalanine and phenylalanine-hexose, were identified in plasma of phenylketonuria patients. These novel markers showed high inter-patient variation and did not correlate to phenylalanine levels, illustrating their potential added value for follow-up. As novel biomarkers for 3-hydroxy-3-methylglutaryl-CoA lyase deficiency, three positional isomers of 3-methylglutaconyl carnitine could be detected in patient plasma. Our results highlight the applicability of current accurate mass multistage fragmentation techniques for structural elucidation of unknown metabolites in human biofluids, offering an unprecedented opportunity to gain further biochemical insights in known inborn errors of metabolism by enabling high confidence identification of novel biomarkers.


Assuntos
Biomarcadores/análise , Biomarcadores/química , Fracionamento Químico/métodos , Doenças Metabólicas/diagnóstico , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Acetil-CoA C-Acetiltransferase/sangue , Acetil-CoA C-Acetiltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Biomarcadores/sangue , Cromatografia Líquida , Feminino , Humanos , Masculino , Doenças Metabólicas/sangue , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/diagnóstico , Metaboloma , Conformação Molecular , Fenilcetonúrias/sangue , Fenilcetonúrias/diagnóstico , Reprodutibilidade dos Testes , Software
12.
J Inherit Metab Dis ; 41(3): 435-445, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29721916

RESUMO

Many inborn errors of metabolism (IEMs) are amenable to treatment; therefore, early diagnosis and treatment is imperative. Despite recent advances, the genetic basis of many metabolic phenotypes remains unknown. For discovery purposes, whole exome sequencing (WES) variant prioritization coupled with clinical and bioinformatics expertise is the primary method used to identify novel disease-causing variants; however, causation is often difficult to establish due to the number of plausible variants. Integrated analysis of untargeted metabolomics (UM) and WES or whole genome sequencing (WGS) data is a promising systematic approach for identifying disease-causing variants. In this review, we provide a literature-based overview of UM methods utilizing liquid chromatography mass spectrometry (LC-MS), and assess approaches to integrating WES/WGS and LC-MS UM data for the discovery and prioritization of variants causing IEMs. To embed this integrated -omics approach in the clinic, expansion of gene-metabolite annotations and metabolomic feature-to-metabolite mapping methods are needed.


Assuntos
Genômica/métodos , Metabolômica/métodos , Doenças Raras , Pesquisa , Genoma Humano/genética , Humanos , Polimorfismo Genético , Doenças Raras/classificação , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Projetos de Pesquisa , Integração de Sistemas
13.
J Inherit Metab Dis ; 41(3): 337-353, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453510

RESUMO

The implementation of whole-exome sequencing in clinical diagnostics has generated a need for functional evaluation of genetic variants. In the field of inborn errors of metabolism (IEM), a diverse spectrum of targeted biochemical assays is employed to analyze a limited amount of metabolites. We now present a single-platform, high-resolution liquid chromatography quadrupole time of flight (LC-QTOF) method that can be applied for holistic metabolic profiling in plasma of individual IEM-suspected patients. This method, which we termed "next-generation metabolic screening" (NGMS), can detect >10,000 features in each sample. In the NGMS workflow, features identified in patient and control samples are aligned using the "various forms of chromatography mass spectrometry (XCMS)" software package. Subsequently, all features are annotated using the Human Metabolome Database, and statistical testing is performed to identify significantly perturbed metabolite concentrations in a patient sample compared with controls. We propose three main modalities to analyze complex, untargeted metabolomics data. First, a targeted evaluation can be done based on identified genetic variants of uncertain significance in metabolic pathways. Second, we developed a panel of IEM-related metabolites to filter untargeted metabolomics data. Based on this IEM-panel approach, we provided the correct diagnosis for 42 of 46 IEMs. As a last modality, metabolomics data can be analyzed in an untargeted setting, which we term "open the metabolome" analysis. This approach identifies potential novel biomarkers in known IEMs and leads to identification of biomarkers for as yet unknown IEMs. We are convinced that NGMS is the way forward in laboratory diagnostics of IEMs.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Erros Inatos do Metabolismo/diagnóstico , Metaboloma , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Humanos , Redes e Vias Metabólicas , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Metabolômica/métodos , Estudos Retrospectivos , Espectrometria de Massas em Tandem
15.
J Inherit Metab Dis ; 40(3): 423-431, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28205048

RESUMO

BACKGROUND: Elevated urinary excretion of orotic acid is associated with treatable disorders of the urea cycle and pyrimidine metabolism. Establishing the correct and timely diagnosis in a patient with orotic aciduria is key to effective treatment. Uridine monophosphate synthase is involved in de novo pyrimidine synthesis. Uridine monophosphate synthase deficiency (or hereditary orotic aciduria), due to biallelic mutations in UMPS, is a rare condition presenting with megaloblastic anemia in the first months of life. If not treated with the pyrimidine precursor uridine, neutropenia, failure to thrive, growth retardation, developmental delay, and intellectual disability may ensue. METHODS AND RESULTS: We identified mild and isolated orotic aciduria in 11 unrelated individuals with diverse clinical signs and symptoms, the most common denominator being intellectual disability/developmental delay. Of note, none had blood count abnormalities, relevant hyperammonemia or altered plasma amino acid profile. All individuals were found to have heterozygous alterations in UMPS. Four of these variants were predicted to be null alleles with complete loss of function. The remaining variants were missense changes and predicted to be damaging to the normal encoded protein. Interestingly, family screening revealed heterozygous UMPS variants in combination with mild orotic aciduria in 19 clinically asymptomatic family members. CONCLUSIONS: We therefore conclude that heterozygous UMPS-mutations can lead to mild and isolated orotic aciduria without clinical consequence. Partial UMPS-deficiency should be included in the differential diagnosis of mild orotic aciduria. The discovery of heterozygotes manifesting clinical symptoms such as hypotonia and developmental delay are likely due to ascertainment bias.


Assuntos
Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferase/deficiência , Orotidina-5'-Fosfato Descarboxilase/deficiência , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Anemia Megaloblástica/genética , Anemia Megaloblástica/metabolismo , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Mutação/genética , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Ácido Orótico/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Pirimidinas/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Uridina/metabolismo
17.
Metab Brain Dis ; 31(3): 587-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26686503

RESUMO

Aminoacylase 1 (ACY1) deficiency is an organic aciduria due to mutations in the ACY1 gene. It is considered much underdiagnosed. Most individuals known to be affected by ACY1 deficiency have presented with neurologic symptoms. We report here a cognitively normal 63-year-old woman who around the age of 12 years had developed dystonic symptoms that gradually evolved into generalized dystonia. Extensive investigations, including metabolic diagnostics and diagnostic exome sequencing, were performed to elucidate the cause of dystonia. Findings were only compatible with a diagnosis of ACY1 deficiency: the urinary metabolite pattern with N-acetylated amino acids was characteristic, there was decreased ACY1 activity in immortalized lymphocytes, and two compound heterozygous ACY1 mutations were detected, one well-characterized c.1057C>T (p.Arg353Cys) and the other novel c.325A>G (p.Arg109Gly). Expression analysis in HEK293 cells revealed high residual activity of the enzyme with the latter mutation. However, following co-transfection of cells with stable expression of the c.1057C>T variant with either wild-type ACY1 or the c.325A>G mutant, only the wild-type enhanced ACY1 activity and ACY1 presence in the Western blot, suggesting an inhibiting interference between the two variants. Our report extends the clinical spectrum of ACY1 deficiency to include dystonia and indicates that screening for organic acidurias deserves consideration in patients with unexplained generalized dystonia.


Assuntos
Amidoidrolases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Distúrbios Distônicos/genética , Mutação , Amidoidrolases/genética , Análise Mutacional de DNA , Feminino , Humanos , Pessoa de Meia-Idade , Fenótipo
18.
Pediatr Nephrol ; 30(9): 1537-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26054712

RESUMO

BACKGROUND: The urinary concentrations of monosaccharides and polyols are used for diagnosing inborn errors of metabolism and renal tubular disorders. Reference values are age-related and depend on the method of detection. However, the influence of the renal function is often still neglected. In this study we examined the urinary excretion of monosaccharides and polyols in children with various degrees of chronic kidney disease (CKD), but with no known metabolic or renal tubular disorders. CASE DIAGNOSIS/TREATMENT: In 25 patients with CKD stage 1-5, urinary concentrations of 18 monosaccharides and polyols were measured by gas chromatography-mass spectrometry (GC-MS) in random urinary samples and were compared with age-related reference values. Serum creatinine was measured at the time of the urine sample, and the height-independent estimated glomerular filtration rate (eGFR-Pottel) was calculated. Urinary excretions of monosaccharides and polyols were above the reference values in 8-88% of all patients. A significant difference between CKD stage 1-2 compared with CKD stage 3-5 was found for allose, arabitol and sorbitol (p < 0.05) and for arabinose, fucose, myoinositol, ribitol, xylitol, and xylose (p < 0.01). CONCLUSIONS: We show that the excretion of polyols and sugars depends on eGFR, which warrants a cautious interpretation of the results in patients with CKD.


Assuntos
Monossacarídeos , Polímeros , Insuficiência Renal Crônica , Anormalidades Urogenitais/complicações , Adolescente , Criança , Pré-Escolar , Creatinina/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Taxa de Filtração Glomerular , Humanos , Masculino , Monossacarídeos/análise , Monossacarídeos/farmacocinética , Polímeros/análise , Polímeros/farmacocinética , Eliminação Renal , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Projetos de Pesquisa , Índice de Gravidade de Doença , Estatística como Assunto , Adulto Jovem
19.
J Am Soc Nephrol ; 25(3): 574-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24204001

RESUMO

Mutations in PCBD1 are causative for transient neonatal hyperphenylalaninemia and primapterinuria (HPABH4D). Until now, HPABH4D has been regarded as a transient and benign neonatal syndrome without complications in adulthood. In our study of three adult patients with homozygous mutations in the PCBD1 gene, two patients were diagnosed with hypomagnesemia and renal Mg(2+) loss, and two patients developed diabetes with characteristics of maturity onset diabetes of the young (MODY), regardless of serum Mg(2+) levels. Our results suggest that these clinical findings are related to the function of PCBD1 as a dimerization cofactor for the transcription factor HNF1B. Mutations in the HNF1B gene have been shown to cause renal malformations, hypomagnesemia, and MODY. Gene expression studies combined with immunohistochemical analysis in the kidney showed that Pcbd1 is expressed in the distal convoluted tubule (DCT), where Pcbd1 transcript levels are upregulated by a low Mg(2+)-containing diet. Overexpression in a human kidney cell line showed that wild-type PCBD1 binds HNF1B to costimulate the FXYD2 promoter, the activity of which is instrumental in Mg(2+) reabsorption in the DCT. Of seven PCBD1 mutations previously reported in HPABH4D patients, five mutations caused proteolytic instability, leading to reduced FXYD2 promoter activity. Furthermore, cytosolic localization of PCBD1 increased when coexpressed with HNF1B mutants. Overall, our findings establish PCBD1 as a coactivator of the HNF1B-mediated transcription necessary for fine tuning FXYD2 transcription in the DCT and suggest that patients with HPABH4D should be monitored for previously unrecognized late complications, such as hypomagnesemia and MODY diabetes.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Fator 1-beta Nuclear de Hepatócito/metabolismo , Hidroliases/genética , Hipercalciúria/genética , Nefrocalcinose/genética , Erros Inatos do Transporte Tubular Renal/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Adolescente , Animais , Feminino , Células HEK293 , Humanos , Hidroliases/metabolismo , Hipercalciúria/metabolismo , Lactente , Túbulos Renais Distais/metabolismo , Magnésio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Nefrocalcinose/metabolismo , Fenilcetonúrias/genética , Erros Inatos do Transporte Tubular Renal/metabolismo , Adulto Jovem
20.
J Lipid Res ; 55(3): 466-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24478031

RESUMO

Total parenteral nutrition (TPN) is associated with the development of parenteral nutrition-associated liver disease (PNALD) in infants. Fish oil-based lipid emulsions can reverse PNALD, yet it is unknown if they can prevent PNALD. We studied preterm pigs administered TPN for 14 days with either 100% soybean oil (IL), 100% fish oil (OV), or a mixture of soybean oil, medium chain triglycerides (MCTs), olive oil, and fish oil (SL); a group was fed formula enterally (ENT). In TPN-fed pigs, serum direct bilirubin, gamma glutamyl transferase (GGT), and plasma bile acids increased after the 14 day treatment but were highest in IL pigs. All TPN pigs had suppressed hepatic expression of farnesoid X receptor (FXR), cholesterol 7-hydroxylase (CYP7A1), and plasma 7α-hydroxy-4-cholesten-3-one (C4) concentrations, yet hepatic CYP7A1 protein abundance was increased only in the IL versus ENT group. Organic solute transporter alpha (OSTα) gene expression was the highest in the IL group and paralleled plasma bile acid levels. In cultured hepatocytes, bile acid-induced bile salt export pump (BSEP) expression was inhibited by phytosterol treatment. We show that TPN-fed pigs given soybean oil developed cholestasis and steatosis that was prevented with both OV and SL emulsions. Due to the presence of phytosterols in the SL emulsion, the differences in cholestasis and liver injury among lipid emulsion groups in vivo were weakly correlated with plasma and hepatic phytosterol content.


Assuntos
Emulsões Gordurosas Intravenosas/administração & dosagem , Hepatopatias/prevenção & controle , Nutrição Parenteral/métodos , Doenças dos Suínos/prevenção & controle , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Colestenonas/sangue , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Feminino , Óleos de Peixe/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Humanos , Lipídeos/administração & dosagem , Lipídeos/química , Hepatopatias/etiologia , Azeite de Oliva , Nutrição Parenteral/efeitos adversos , Óleos de Plantas/administração & dosagem , Gravidez , Nascimento Prematuro/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Óleo de Soja/administração & dosagem , Suínos , Doenças dos Suínos/etiologia , Triglicerídeos/administração & dosagem , gama-Glutamiltransferase/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa