Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21079, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473901

RESUMO

Transduction of endothelial cells (EC) with a vector that expresses apolipoprotein A-I (APOAI) reduces atherosclerosis in arteries of fat-fed rabbits. However, the effects on atherosclerosis are partial and might be enhanced if APOAI expression could be increased. With a goal of developing an expression cassette that generates higher levels of APOAI mRNA in EC, we tested 4 strategies, largely in vitro: addition of 2 types of enhancers, addition of computationally identified EC-specific cis-regulatory modules (CRM), and insertion of the rabbit APOAI gene at the transcription start site (TSS) of sequences cloned from genes that are highly expressed in cultured EC. Addition of a shear stress-responsive enhancer did not increase APOAI expression. Addition of 2 copies of a Mef2c enhancer increased APOAI expression from a moderately active promoter/enhancer but decreased APOAI expression from a highly active promoter/enhancer. Of the 11 CRMs, 3 increased APOAI expression from a moderately active promoter (2-7-fold; P < 0.05); none increased expression from a highly active promoter/enhancer. Insertion of the APOAI gene into the TSS of highly expressed EC genes did not increase expression above levels obtained with a moderately active promoter/enhancer. New strategies are needed to further increase APOAI transgene expression in EC.


Assuntos
Apolipoproteína A-I , Células Endoteliais , Coelhos , Animais , Apolipoproteína A-I/genética
2.
Hum Gene Ther ; 31(3-4): 219-232, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31842627

RESUMO

Atherosclerosis is a disease of large- and medium-sized arteries that is caused by cholesterol accumulation in arterial intimal cells, including macrophages and smooth muscle cells (SMC). Cholesterol accumulation in these cells can be prevented or reversed in preclinical models-and atherosclerosis reduced-by transgenesis that increases expression of molecules that control cholesterol efflux, including apolipoprotein AI (apoAI) and ATP-binding cassette subfamily A, member 1 (ABCA1). In a previous work, we showed that transduction of arterial endothelial cells (EC)-with a helper-dependent adenovirus (HDAd) expressing apoAI-enhanced EC cholesterol efflux in vitro and decreased atherosclerosis in vivo. Similarly, overexpression of ABCA1 in cultured EC increased cholesterol efflux and decreased inflammatory gene expression. These EC-targeted gene-therapy strategies might be improved by concurrent upregulation of cholesterol-efflux pathways in other intimal cell types. Here, we report modification of this strategy to enable delivery of therapeutic nucleic acids to cells of the sub-endothelium. We constructed an HDAd (HDAdXMoAntimiR33a5p) that expresses an antagomiR directed at miR-33a-5p (a microRNA that suppresses cholesterol efflux by silencing ABCA1). HDAdXMoAntimiR33a5p contains a sequence motif that enhances uptake of anti-miR-33a-5p into exosomes. Cultured EC release exosomes containing small RNA, including miR-33a-5p. After transduction with HDAdXMoAntimiR33a5p, EC-derived exosomes containing anti-miR-33a-5p accumulate in conditioned medium (CM). When this CM is added to macrophages or SMC, anti-miR-33a-5p is detected in these target cells. Exosome-mediated transfer of anti-miR-33a-5p reduces miR-33a-5p by ∼65-80%, increases ABCA1 protein by 1.6-2.2-fold, and increases apoAI-mediated cholesterol efflux by 1.4-1.6-fold (all p ≤ 0.01). These effects were absent in macrophages and SMC incubated in exosome-depleted CM. EC transduced with HDAdXMoAntimiR33a5p release exosomes that can transfer anti-miR-33a-5p to other intimal cell types, upregulating cholesterol efflux from these cells. This strategy provides a platform for genetic modification of intimal and medial cells, using a vector that transduces only EC.


Assuntos
Antagomirs/genética , Colesterol/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Interferência de RNA , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Antagomirs/metabolismo , Apolipoproteína A-I/metabolismo , Transporte Biológico , Vesículas Extracelulares/metabolismo , Humanos , Transporte de RNA , Pequeno RNA não Traduzido/genética
3.
Hum Gene Ther ; 30(2): 236-248, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30079772

RESUMO

Atherosclerosis, a disease of blood vessels, is driven by cholesterol accumulation and inflammation. Gene therapy that removes cholesterol from blood vessels and decreases inflammation is a promising approach for prevention and treatment of atherosclerosis. In previous work, we reported that helper-dependent adenoviral (HDAd) overexpression of apolipoprotein A-I (apoAI) in endothelial cells (ECs) increases cholesterol efflux in vitro and reduces atherosclerosis in vivo. However, the effect of HDAdApoAI on atherosclerosis is partial. To improve this therapy, we considered concurrent overexpression of ATP-binding cassette subfamily A, member 1 (ABCA1), a protein that is required for apoAI-mediated cholesterol efflux. Before attempting combined apoAI/ABCA1 gene therapy, we tested whether an HDAd that expresses ABCA1 (HDAdABCA1) increases EC cholesterol efflux, whether increased cholesterol efflux alters normal EC physiology, and whether ABCA1 overexpression in ECs has anti-inflammatory effects. HDAdABCA1 increased EC ABCA1 protein (∼3-fold; p < 0.001) and apoAI-mediated cholesterol efflux (2.3-fold; p = 0.007). Under basal culture conditions, ABCA1 overexpression did not alter EC proliferation, metabolism, migration, apoptosis, nitric oxide production, or inflammatory gene expression. However, in serum-starved, apoAI-treated EC, ABCA1 overexpression had anti-inflammatory effects: decreased inflammatory gene expression (∼50%; p ≤ 0.02 for interleukin [IL]-6, tumor necrosis factor [TNF]-α, and vascular cell adhesion protein-1); reduced lipid-raft Toll-like receptor 4 (80%; p = 0.001); and a trend towards increased nitric oxide production (∼55%; p = 0.1). In ECs stimulated with lipopolysaccharide, ABCA1 overexpression markedly decreased inflammatory gene expression (∼90% for IL-6 and TNF-α; p < 0.001). Therefore, EC ABCA1 overexpression has no toxic effects and counteracts the two key drivers of atherosclerosis: cholesterol accumulation and inflammation. In vivo testing of HDAdABCA1 is warranted.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Apolipoproteína A-I/metabolismo , Aterosclerose , Colesterol/metabolismo , Células Endoteliais , Terapia Genética , Transportador 1 de Cassete de Ligação de ATP/genética , Adenoviridae , Animais , Apolipoproteína A-I/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/terapia , Bovinos , Colesterol/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Vetores Genéticos , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa