Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ecol Appl ; : e3034, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39307919

RESUMO

Urban tree canopy cover is often unequally distributed across cities such that more socially vulnerable neighborhoods often have lower tree canopy cover than less socially vulnerable neighborhoods. However, how the diversity and composition of the urban canopy affect the nature of social-ecological benefits (and burdens), including the urban forest's vulnerability to climate change, remains underexamined. Here, we synthesize tree inventories developed by multiple organizations and present a species-specific, geolocated database of more than 600,000 urban trees across the 7-county Minneapolis-St. Paul (MSP) metropolitan area in the Upper Midwest of the United States. We find that tree diversity across the MSP is variable yet dominated by a few species (e.g., Fraxinus pennsylvanica, Acer platanoides, and Gleditsia triacanthos), contributing to the vulnerability of the MSP urban forest to future climate change and disturbances. In contrast to tree canopy cover, tree diversity was not well predicted by socioeconomic or demographic factors. However, our analysis identified areas where both climate and social vulnerability are high. Our results add to a growing body of literature emphasizing the importance of considering how complex and interacting social and ecological factors drive urban forest diversity and composition when pursuing management objectives.

2.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355116

RESUMO

Outbreaks of blastomycosis, caused by the fungus Blastomyces dermatitidis, occur in endemic areas of the United States and Canada but the geographic range of blastomycosis is expanding. Previous studies inferred the location of B. dermatitidis through epidemiologic data associated with outbreaks because culture of B. dermatitidis from the environment is often unsuccessful. In this study, we used a culture-independent, PCR-based method to identify B. dermatitidis DNA in environmental samples using the BAD1 promoter region. We tested 250 environmental samples collected in Minnesota, either associated with blastomycosis outbreaks or environmental samples collected from high- and low-endemic regions to determine basal prevalence of B. dermatitidis in the environment. We identified a fifth BAD1 promoter haplotype of B. dermatitidis prevalent in Minnesota. Ecological niche analysis identified latitude, longitude, elevation, and site classification as environmental parameters associated with the presence of B. dermatitidis Using this analysis, a Random Forest model predicted B. dermatitidis presence in basal environmental samples with 75% accuracy. These data support use of culture-independent, PCR-based environmental sampling to track spread into new regions and to characterize the unknown B. dermatitidis environmental niche.Importance Upon inhalation of spores from the fungus Blastomyces dermatitidis from the environment, humans and animals can develop the disease blastomycosis. Based on disease epidemiology, B. dermatitidis is known to be endemic in the United States and Canada around the Great Lakes and in the Ohio and Mississippi River Valleys but is starting to emerge in other areas. B. dermatitidis is extremely difficult to culture from the environment so little is known about the environmental reservoirs for this pathogen. We used a culture-independent PCR-based assay to identify the presence of B. dermatitidis DNA in soil samples from Minnesota. By combining molecular data with ecological niche modeling, we were able to predict the presence of B. dermatitidis in environmental samples with 75% accuracy and to define characteristics of the B. dermatitidis environmental niche. Importantly, we showed the effectiveness of using a PCR-based assay to identify B. dermatitidis in environmental samples.

3.
Glob Chang Biol ; 25(3): 1171-1189, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29808518

RESUMO

Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling and drainage events. Our results fill a critical gap in the understanding of historical and potential future trajectories of change in northern high-latitude regions.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Alaska , Regiões Árticas , Pergelissolo , Desenvolvimento Vegetal , Análise Espaço-Temporal , Temperatura
4.
Ecol Appl ; 27(5): 1383-1402, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390104

RESUMO

Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socioecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. Here we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 yr, Alaska has seen a large increase in mean annual air temperature (1.7°C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9-74% and 33-55% by the end of the 21st century, respectively. Since 2000, an average of 678 595 ha/yr was burned, more than twice the annual average during 1950-1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8-44%) and an increase in early-successional deciduous forest (25-113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223-620%), shrub tundra may increase (4-21%), and graminoid tundra might decrease (10-24%). This study sheds light on the sensitivity of Alaska's ecosystems to change that has the potential to significantly affect local and regional carbon balance, but more research is needed to improve estimates of land-surface and subsurface properties, and to better account for ecosystem dynamics affected by a myriad of biophysical factors and interactions.


Assuntos
Ciclo do Carbono , Mudança Climática , Taiga , Temperatura , Tundra , Alaska , Sequestro de Carbono , Pergelissolo
5.
J Econ Entomol ; 115(5): 1557-1563, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35640221

RESUMO

Spectral remote sensing has the potential to improve scouting and management of soybean aphid (Aphis glycines Matsumura), which can cause yield losses of over 40% in the North Central Region of the United States. We used linear support vector machines (SVMs) to determine 1) whether hyperspectral samples could be classified into treat/no-treat classes based on the economic threshold (250 aphids per plant) and 2) how many wavelengths or features are needed to generate an accurate model without overfitting the data. A range of aphid infestation levels on soybean was created using caged field plots in 2013, 2014, 2017, and 2018 in Minnesota and in 2017 and 2018 in Iowa. Hyperspectral measurements of soybean canopies in each plot were recorded with a spectroradiometer. SVM training and testing were performed using 15 combinations of normalized canopy reflectance at wavelengths of 720, 750, 780, and 1,010 nm. Pairwise Bonferroni-adjusted t-tests of Cohen's kappa values showed four wavelength combinations were optimal, namely model 1 (780 nm), model 2 (780 and 1,010 nm), model 3 (780, 1,010, and 720 nm), and model 4 (780, 1,010, 720, and 750 nm). Model 2 showed the best overall performance, with an accuracy of 89.4%, a sensitivity of 81.2%, and a specificity of 91.6%. The findings from this experiment provide the first documentation of successful classification of remotely sensed spectral data of soybean aphid-induced stress into threshold-based classes.


Assuntos
Afídeos , Animais , Iowa , Minnesota , Glycine max , Máquina de Vetores de Suporte
6.
J Econ Entomol ; 113(2): 779-786, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31782504

RESUMO

Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a common pest of soybean, Glycine max (L.) Merrill (Fabales: Fabaceae), in North America requiring frequent scouting as part of an integrated pest management plan. Current scouting methods are time consuming and provide incomplete coverage of soybean. Unmanned aerial vehicles (UAVs) are capable of collecting high-resolution imagery that offer more detailed coverage in agricultural fields than traditional scouting methods. Recently, it was documented that changes to the spectral reflectance of soybean canopies caused by aphid-induced stress could be detected from ground-based sensors; however, it remained unknown whether these changes could also be detected from UAV-based sensors. Small-plot trials were conducted in 2017 and 2018 where cages were used to manipulate aphid populations. Additional open-field trials were conducted in 2018 where insecticides were used to create a gradient of aphid pressure. Whole-plant soybean aphid densities were recorded along with UAV-based multispectral imagery. Simple linear regressions were used to determine whether UAV-based multispectral reflectance was associated with aphid populations. Our findings indicate that near-infrared reflectance decreased with increasing soybean aphid populations in caged trials when cumulative aphid days surpassed the economic injury level, and in open-field trials when soybean aphid populations were above the economic threshold. These findings provide the first documentation of soybean aphid-induced stress being detected from UAV-based multispectral imagery and advance the use of UAVs for remote scouting of soybean aphid and other field crop pests.


Assuntos
Afídeos , Inseticidas , Animais , Modelos Lineares , América do Norte , Glycine max
7.
mBio ; 3(5)2012.
Artigo em Inglês | MEDLINE | ID: mdl-23015735

RESUMO

UNLABELLED: In sub-Saharan Africa, cryptococcal meningitis (CM) continues to be a predominant cause of AIDS-related mortality. Understanding virulence and improving clinical treatments remain important. To characterize the role of the fungal strain genotype in clinical disease, we analyzed 140 Cryptococcus isolates from 111 Ugandans with AIDS and CM. Isolates consisted of 107 nonredundant Cryptococcus neoformans var. grubii strains and 8 C. neoformans var. grubii/neoformans hybrid strains. Multilocus sequence typing (MLST) was used to characterize genotypes, yielding 15 sequence types and 4 clonal clusters. The largest clonal cluster consisted of 74 isolates. The results of Burst and phylogenetic analysis suggested that the C. neoformans var. grubii strains could be separated into three nonredundant evolutionary groups (Burst group 1 to group 3). Patient mortality was differentially associated with the different evolutionary groups (P = 0.04), with the highest mortality observed among Burst group 1, Burst group 2, and hybrid strains. Compared to Burst group 3 strains, Burst group 1 strains were associated with higher mortality (P = 0.02), exhibited increased capsule shedding (P = 0.02), and elicited a more pronounced Th(2) response during ex vivo cytokine release assays with strain-specific capsule stimulation (P = 0.02). The results of these analyses suggest that cryptococcal strain variation can be an important determinant of human immune responses and mortality. IMPORTANCE: Cryptococcus neoformans is a common life-threatening human fungal pathogen that is responsible for an estimated 1 million cases of meningitis in HIV-infected patients annually. Virulence factors that are important in human disease have been identified, yet the impacts of the fungal strain genotype on virulence and outcomes of human infection remain poorly understood. Using an analysis of strain variation based on in vitro assays and clinical data from Ugandans living with AIDS and cryptococcal infection, we report that strain genotype predicts the type of immune response and mortality risk. These studies suggest that knowledge of the strain genotype during human infections could be used to predict disease outcomes and lead to improved treatment approaches aimed at targeting the specific combination of pathogen virulence and host response.


Assuntos
Cryptococcus neoformans/classificação , Cryptococcus neoformans/genética , DNA Fúngico/genética , Meningite Criptocócica/imunologia , Meningite Criptocócica/microbiologia , Tipagem de Sequências Multilocus , Síndrome da Imunodeficiência Adquirida/complicações , Adulto , Análise por Conglomerados , Cryptococcus neoformans/isolamento & purificação , Feminino , Genótipo , Humanos , Masculino , Meningite Criptocócica/mortalidade , Pessoa de Meia-Idade , Técnicas de Tipagem Micológica , Filogenia , Estudos Prospectivos , Análise de Sobrevida , Resultado do Tratamento , Uganda
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa