Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(1): 63-74, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31754711

RESUMO

The introduction of non-bridging phosphorothioate (PS) linkages in oligonucleotides has been instrumental for the development of RNA therapeutics and antisense oligonucleotides. This modification offers significantly increased metabolic stability as well as improved pharmacokinetic properties. However, due to the chiral nature of the phosphorothioate, every PS group doubles the amount of possible stereoisomers. Thus PS oligonucleotides are generally obtained as an inseparable mixture of a multitude of diastereoisomeric compounds. Herein, we describe the introduction of non-chiral 3' thiophosphate linkages into antisense oligonucleotides and report their in vitro as well as in vivo activity. The obtained results are carefully investigated for the individual parameters contributing to antisense activity of 3' and 5' thiophosphate modified oligonucleotides (target binding, RNase H recruitment, nuclease stability). We conclude that nuclease stability is the major challenge for this approach. These results highlight the importance of selecting meaningful in vitro experiments particularly when examining hitherto unexplored chemical modifications.


Assuntos
Apolipoproteína B-100/genética , Oligonucleotídeos/genética , Fosfatos/química , Oligonucleotídeos Fosforotioatos/genética , RNA Longo não Codificante/genética , Animais , Apolipoproteína B-100/antagonistas & inibidores , Apolipoproteína B-100/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Rim/citologia , Rim/metabolismo , Fígado/citologia , Fígado/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Fosfatos/metabolismo , Oligonucleotídeos Fosforotioatos/síntese química , Oligonucleotídeos Fosforotioatos/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , Estereoisomerismo
2.
Nucleic Acids Res ; 46(11): 5366-5380, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29790953

RESUMO

Antisense oligonucleotides that are dependent on RNase H for cleavage and subsequent degradation of complementary RNA are being developed as therapeutics. Besides the intended RNA target, such oligonucleotides may also cause degradation of unintended RNA off-targets by binding to partially complementary target sites. Here, we characterized the global effects on the mouse liver transcriptome of four oligonucleotides designed as gapmers, two targeting Apob and two targeting Pcsk9, all in different regions on their respective intended targets. This study design allowed separation of intended- and off-target effects on the transcriptome for each gapmer. Next, we used sequence analysis to identify possible partially complementary binding sites among the potential off-targets, and validated these by measurements of melting temperature and RNase H-cleavage rates. Generally, our observations were as expected in that fewer mismatches or bulges in the gapmer/transcript duplexes resulted in a higher chance of those duplexes being effective substrates for RNase H. Follow-up experiments in mice and cells show, that off-target effects can be mitigated by ensuring that gapmers have minimal sequence complementarity to any RNA besides the intended target, and that they do not have exaggerated binding affinity to the intended target.


Assuntos
Terapia Genética/métodos , Ácidos Nucleicos Heteroduplexes/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA Complementar/metabolismo , RNA Mensageiro/metabolismo , Ribonuclease H/metabolismo , Animais , Apolipoproteínas B/genética , Sítios de Ligação/genética , Células Cultivadas , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/genética
3.
Nucleic Acids Res ; 45(5): 2262-2282, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28426096

RESUMO

All drugs perturb the expression of many genes in the cells that are exposed to them. These gene expression changes can be divided into effects resulting from engaging the intended target and effects resulting from engaging unintended targets. For antisense oligonucleotides, developments in bioinformatics algorithms, and the quality of sequence databases, allow oligonucleotide sequences to be analyzed computationally, in terms of the predictability of their interactions with intended and unintended RNA targets. Applying these tools enables selection of sequence-specific oligonucleotides where no- or only few unintended RNA targets are expected. To evaluate oligonucleotide sequence-specificity experimentally, we recommend a transcriptomics protocol where two or more oligonucleotides targeting the same RNA molecule, but with entirely different sequences, are evaluated together. This helps to clarify which changes in cellular RNA levels result from downstream processes of engaging the intended target, and which are likely to be related to engaging unintended targets. As required for all classes of drugs, the toxic potential of oligonucleotides must be evaluated in cell- and animal models before clinical testing. Since potential adverse effects related to unintended targeting are sequence-dependent and therefore species-specific, in vitro toxicology assays in human cells are especially relevant in oligonucleotide drug discovery.


Assuntos
Descoberta de Drogas/métodos , Oligonucleotídeos Antissenso/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Análise de Sequência de RNA/estatística & dados numéricos , Animais , Pareamento de Bases , Avaliação Pré-Clínica de Medicamentos , Humanos , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Sensibilidade e Especificidade , Termodinâmica
4.
Mol Ther ; 24(6): 1117-1125, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26961407

RESUMO

We have identified the existence of a productive, PKC-α-dependent endocytotic silencing pathway that leads gymnotically-delivered locked nucleic acid (LNA)-gapmer phosphorothioate antisense oligonucleotides (ASOs) into late endosomes. By blocking the maturation of early endosomes to late endosomes, silencing the expression of PKC-α results in the potent reduction of ASO silencing ability in the cell. We have also demonstrated that silencing of gene expression in the cytoplasm is vitiated when PKC-α expression is reduced. Restoring PKC-α expression via a reconstitution experiment reinstates the ability of ASOs to silence. These results advance our understanding of intracellular ASO trafficking and activity following gymnotic delivery, and further demonstrate the existence of two distinct silencing pathways in mammalian cells, one in the cytoplasmic and the other in the nuclear compartment.


Assuntos
Endossomos/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Proteína Quinase C-alfa/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Proteína Quinase C-alfa/genética , Tionucleotídeos
5.
Nucleic Acids Res ; 43(19): 9350-61, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26433227

RESUMO

Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing.


Assuntos
Citoplasma/metabolismo , Inativação Gênica , Oligonucleotídeos Antissenso , Proteínas Argonautas/metabolismo , Linhagem Celular , Citoplasma/química , Técnicas de Transferência de Genes , Oligonucleotídeos Antissenso/análise , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Transfecção
6.
Haematologica ; 98(12): 1905-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24142999

RESUMO

In vitro and in vivo resistance to prednisolone are predictive for an adverse prognosis in pediatric precursor B-acute lymphoblastic leukemia. Causes of resistance are still poorly understood. In this study, we observed that prednisolone exposure of prednisolone-sensitive patients' leukemic cells decreased anti-apoptotic MCL1 protein levels by 2.9-fold, while MCL1 protein expression in prednisolone-resistant leukemic patients' cells was unaffected (P<0.01). Locked nucleic acid oligonucleotides directed against MCL1 reduced MCL1 protein levels by 82±16% (P<0.05) in leukemic cells, decreased proliferation by 9-fold and sensitized to prednisolone up to 80.8-fold, compared to a non-silencing-control locked nucleic acid (P<0.05). Remarkably, we discovered that MCL1-silencing up-regulated the glucose consumption of leukemic cells by 2.5-fold (P<0.05), suggesting a potential rescue mechanism mediated by glycolysis. Targeting glycolysis by 2-deoxyglucose synergistically inhibited leukemic survival by 23.2-fold in MCL1-silenced cells (P<0.05). Moreover, 2-deoxyglucose and MCL1 locked nucleic acid concomitantly sensitized leukemic cells to prednisolone compared to MCL1 locked nucleic acid or 2-deoxyglucose alone (P<0.05). In conclusion, these results indicate the need to target both MCL1 and glycolysis simultaneously to inhibit leukemic survival and sensitize acute leukemia patients towards prednisolone.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prednisolona/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glicólise/fisiologia , Células HEK293 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Prednisolona/farmacologia , Células Tumorais Cultivadas
7.
Mol Ther ; 20(2): 376-81, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22108858

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.


Assuntos
LDL-Colesterol/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/química , Pró-Proteína Convertases/antagonistas & inibidores , Animais , Humanos , Injeções Subcutâneas , Macaca fascicularis , Masculino , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
8.
Nucleic Acids Res ; 38(1): e3, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854938

RESUMO

For the past 15-20 years, the intracellular delivery and silencing activity of oligodeoxynucleotides have been essentially completely dependent on the use of a delivery technology (e.g. lipofection). We have developed a method (called 'gymnosis') that does not require the use of any transfection reagent or any additives to serum whatsoever, but rather takes advantage of the normal growth properties of cells in tissue culture in order to promote productive oligonucleotide uptake. This robust method permits the sequence-specific silencing of multiple targets in a large number of cell types in tissue culture, both at the protein and mRNA level, at concentrations in the low micromolar range. Optimum results were obtained with locked nucleic acid (LNA) phosphorothioate gap-mers. By appropriate manipulation of oligonucleotide dosing, this silencing can be continuously maintained with little or no toxicity for >240 days. High levels of oligonucleotide in the cell nucleus are not a requirement for gene silencing, contrary to long accepted dogma. In addition, gymnotic delivery can efficiently deliver oligonucleotides to suspension cells that are known to be very difficult to transfect. Finally, the pattern of gene silencing of in vitro gymnotically delivered oligonucleotides correlates particularly well with in vivo silencing. The establishment of this link is of particular significance to those in the academic research and drug discovery and development communities.


Assuntos
Inativação Gênica , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Humanos , Indicadores e Reagentes , Camundongos , Oligonucleotídeos/análise , Oligonucleotídeos Antissenso/análise , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transfecção
9.
Nucleic Acids Res ; 38(20): 7100-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20615897

RESUMO

The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half-life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1-2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates.


Assuntos
Apolipoproteínas B/metabolismo , Colesterol/sangue , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Animais , Apolipoproteínas B/genética , Autorradiografia , Pareamento Incorreto de Bases , Linhagem Celular Tumoral , Feminino , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos/química , Oligonucleotídeos/farmacocinética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , RNA Mensageiro/metabolismo
10.
Mol Ther Nucleic Acids ; 29: 176-188, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35860384

RESUMO

The introduction of sulfur into the phosphate linkage of chemically synthesized oligonucleotides creates the stereocenters on phosphorus atoms. Researchers have valued the nature of backbone stereochemistry and early on investigated drug properties for the individual stereocenters in dimers or short oligomers. Only very recently, it has become possible to synthesize fully stereodefined antisense oligonucleotides in good yield and purity. Non-bridging phosphorodithioate (PS2) introduces second sulfur into the phosphorothioate linkage to remove the chirality of phosphorus atom. Here, we describe the application of symmetrical non-bridging PS2 linkages in the context of stereodefined locked nucleic acids (LNAs) antisense oligonucleotides with the goal of reducing chiral complexity and, ultimately, resulting in single molecules. In addition, we propose a rather simple strategy to rapidly identify stereodefined gapmers, combining PS2 and a preferred stereochemistry motif (RSSR), which supports RNase-H-mediated target knockdown. Pharmacological efficacy and metabolic stability are investigated systematically using ApoB as a target sequence, where in vivo data correlate well to what is observed in vitro.

11.
Sci Rep ; 11(1): 6321, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737567

RESUMO

Liver and kidney uptake and antisense activity is studied for a series of Locked Nucleic Acid (LNA) oligonucleotides with fully stereo-defined, internucleoside linkages. These stereo-specific phosphorothioates are made with a newly developed synthesis method and are being analyzed both theoretically and experimentally. Their structures are obtained theoretically by using many-body Schrödinger equations applied to a group of 11 stereo-defined LNA antisense oligonucleotides selected for biological experiments. The fully converged electronic structures were obtained from ab initio quantum calculations providing the specific electronic structures. One important result was the observation that the calculated electronic structure, represented by the iso-surface area of the electron density in Å2, correlated linearly with LNA oligonucleotide uptake in the liver and kidney. This study also shows that more complex biological phenomena, such as drug activity, will require more molecular and cellular identifiers than used here before a correlation can be found. Establishing biological correlations between quantum mechanical (QM) calculated structures and antisense oligonucleotides is novel, and this method may constitute new tools in drug discovery.


Assuntos
Rim/química , Fígado/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos/química , Fenômenos Bioquímicos , Elétrons , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Preparações Farmacêuticas/química , Teoria Quântica , RNA Mensageiro/química
12.
Mol Ther Nucleic Acids ; 23: 63-75, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33335793

RESUMO

The androgen receptor (AR) plays a critical role in the development of prostate cancer (PCa) through the activation of androgen-induced cellular proliferation genes. Thus, blocking AR-mediated transcriptional activation is expected to inhibit the growth and spread of PCa. Using tailor-made splice-switching locked nucleic acid (LNA) oligonucleotides (SSOs), we successfully redirected splicing of the AR precursor (pre-)mRNA and destabilized the transcripts via the introduction of premature stop codons. Furthermore, the SSOs simultaneously favored production of the AR45 mRNA in lieu of the full-length AR. AR45 is an AR isoform that can attenuate the activity of both full-length and oncogenic forms of AR by binding to their common N-terminal domain (NTD), thereby blocking their transactivation potential. A large screen was subsequently used to identify individual SSOs that could best perform this dual function. The selected SSOs powerfully silence AR expression and modulate the expression of AR-responsive cellular genes. This bi-functional strategy that uses a single therapeutic molecule can be the basis for novel PCa treatments. It might also be customized to other types of therapies that require the silencing of one gene and the simultaneous expression of a different isoform.

13.
PLoS One ; 15(6): e0232603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530964

RESUMO

Drug discovery with phosphorothioate oligonucleotides is an area of intensive research. In this study we have controlled the stereochemistry of the phosphorothioate backbone of LNA oligonucleotides to investigate the differences in safety profile, target mRNA knock down, and cellular uptake in vitro. The study reveals that controlling only four stereocenters in an isomeric phosphorothioate mixture can improve the therapeutic index significantly by improving safety without compromising activity.


Assuntos
Oligonucleotídeos/química , Animais , Sobrevivência Celular , Células Cultivadas , Química Farmacêutica , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Humanos , Túbulos Renais/metabolismo , Camundongos , Estrutura Molecular , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/toxicidade , Oligonucleotídeos Fosforotioatos/química , RNA Mensageiro/antagonistas & inibidores
14.
Mol Ther Nucleic Acids ; 19: 706-717, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31951854

RESUMO

The identification of molecules that can modulate RNA or protein function and the subsequent chemical and structural optimization to refine such molecules into drugs is a key activity in drug discovery. Here, we explored the extent to which chemical and structural differences in antisense oligonucleotides, designed as gapmers and capable of recruiting RNase H for target RNA cleavage, can affect their functional properties. To facilitate structure-activity learning, we analyzed two sets of iso-sequential locked nucleic acid (LNA)-modified gapmers, where we systematically varied the number and positions of LNA modifications in the flanks. In total, we evaluated 768 different and architecturally diverse gapmers in HeLa cells for target knockdown activity and cytotoxic potential and found widespread differences in both of these properties. Binding affinity between gapmer and RNA target, as well as the presence of certain short sequence motifs in the gap region, can explain these differences, and we propose statistical and machine-learning models that can be used to predict region-specific, optimal LNA-modification architectures. Once accessible regions in the target of interest have been identified, our results show how to refine and optimize LNA gapmers with improved pharmacological profiles targeting such regions.

15.
Mol Ther Nucleic Acids ; 19: 124-131, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31846799

RESUMO

Well-validated strategies for discovering potent and efficacious antisense oligonucleotides are central to realize the full therapeutic potential of RNA therapy. In this study, we focus on RNA targets where the same sequence of 16-20 nt is found in several regions across the RNA, and not in any other RNA. Targeting such unique repeated regions with oligonucleotides designed as gapmers and capable of recruiting RNase H has previously been proposed as a strategy for identifying potent gapmers. By sequence analysis of the human and monkey transcriptomes, we find that such unique repeated regions in RNA are often conserved between humans and monkeys, which allow pharmacodynamic effects to be evaluated in non-human primates before testing in humans. For eight potential RNA targets chosen in an unbiased fashion, we targeted their unique repeated regions with locked nucleic acid (LNA)-modified gapmers, and for six of them we identified gapmers that were significantly more potent and efficacious in vitro than non-repeat-targeting gapmer controls. We suggest a stochastic model for repeat-targeting gapmers that explains all effects observed so far and can help guide future work. Our results support the targeting of repeated regions as an effective strategy for discovering gapmer antisense oligonucleotides suitable for therapeutic development.

16.
Nucleic Acid Ther ; 30(1): 4-13, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618108

RESUMO

Methods for the quantification of antisense oligonucleotides (AONs) provide insightful information on biodistribution and intracellular trafficking. However, the established methods have not provided information on the absolute number of molecules in subcellular compartments or about how many AONs are needed for target gene reduction for unconjugated AONs. We have developed a new method for nuclear AON quantification that enables us to determine the absolute number of AONs per nucleus without relying on AON conjugates such as fluorophores that may alter AON distribution. This study describes an alternative and label-free method using subcellular fractionation, nucleus counting, and locked nucleic acid (LNA) sandwich enzyme-linked immunosorbent assay to quantify absolute numbers of oligonucleotides in nuclei. Our findings show compound variability (diversity) by which 247,000-693,000 LNAs/nuclei results in similar target reduction for different compounds. This method can be applied to any antisense drug discovery platform providing information on specific and clinically relevant AONs. Finally, this method can directly compare nuclear entry of AON with target gene knockdown for any compound design and nucleobase sequence, gene target, and phosphorothioate stereochemistry.


Assuntos
Terapia de Alvo Molecular , Oligonucleotídeos Antissenso/isolamento & purificação , Oligonucleotídeos/isolamento & purificação , Distribuição Tecidual/genética , Núcleo Celular/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Distribuição Tecidual/efeitos dos fármacos
17.
Mol Ther Nucleic Acids ; 19: 1290-1298, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092825

RESUMO

Hundreds of dominant-negative myosin mutations have been identified that lead to hypertrophic cardiomyopathy, and the biomechanical link between mutation and disease is heterogeneous across this patient population. To increase the therapeutic feasibility of treating this diverse genetic population, we investigated the ability of locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to selectively knock down mutant myosin transcripts by targeting single-nucleotide polymorphisms (SNPs) that were found to be common in the myosin heavy chain 7 (MYH7) gene. We identified three SNPs in MYH7 and designed ASO libraries to selectively target either the reference or alternate MYH7 sequence. We identified ASOs that selectively knocked down either the reference or alternate allele at all three SNP regions. We also show allele-selective knockdown in a mouse model that was humanized on one allele. These results suggest that SNP-targeting ASOs are a promising therapeutic modality for treating cardiac pathology.

18.
Methods Mol Biol ; 535: 165-86, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19377996

RESUMO

The aptamer technology has been introduced in the early 1990s. With this technique ligands for organic dyes and proteins have been identified in many research field, providing various inhibitory molecules that allow functional interference in biological systems. Aptamers can therefore be employed for various applications ranging from diagnostic to therapeutic assay formats. Locked nucleic acid aptamers (LNA-Aps) are oligonucleotides containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation, evolved in vitro to bind target ligands with high affinity and specificity. LNA-Aps are attractive alternatives to antibody- and small-molecule-based therapeutics due to their stability, low toxicity and immunogenecity.


Assuntos
Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/uso terapêutico , Oligonucleotídeos/síntese química , Oligonucleotídeos/uso terapêutico , Aptâmeros de Nucleotídeos/isolamento & purificação , Aptâmeros de Nucleotídeos/metabolismo , Repetição Terminal Longa de HIV , Humanos , NF-kappa B/metabolismo , Oligonucleotídeos/isolamento & purificação , Oligonucleotídeos/metabolismo , Compostos Organofosforados/síntese química , Tenascina/metabolismo , Trombina/metabolismo
19.
Mol Cancer Ther ; 7(9): 2736-45, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18790754

RESUMO

The ability to regulate the cellular homeostasis of a higher organism through tight control of apoptosis and cell division is crucial for life. Dysregulation of these mechanisms is often associated with cancerous phenotypes in cells. Optimal cancer therapy is a fine balance between effective cancer cell killing and at the same time minimizing, or avoiding, damage to the surrounding healthy tissue. To obtain this, it is necessary to identify and inhibit molecular targets on which the cancer cells are strongly dependent. Survivin represents such a target, and it has been published previously that peptide vaccines, the small-molecule YM155, and the antisense molecule LY2181308/ISIS23722, via different mechanisms, have been used as survivin inhibitors. In this article, a new potent antisense inhibitor of survivin, SPC3042, is presented, and the properties of SPC3042 are compared with the previously published antisense drug, LY2181308/ISIS23722. SPC3042 is a 16-mer locked nucleic acid (LNA) oligonucleotide and designed as a fully phosphorothiolated gapmer containing 7 LNA nucleotides in the flanks. The LNA nucleotides in SPC3042 provide nuclease stability and higher potency for survivin mRNA inhibition compared with earlier generations of antisense reagents. It is shown that the down-regulation of survivin with SPC3042 leads to cell cycle arrest, pronounced cellular apoptosis, and down-regulation of Bcl-2. It is also shown that SPC3042 is a sensitizer of prostate cancer cells to Taxol treatment in vitro and in vivo.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Oligodesoxirribonucleotídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxirribonucleases/metabolismo , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Survivina , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Methods Mol Biol ; 2036: 261-282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410803

RESUMO

Antisense oligonucleotides (AONs) that promote degradation of complementary RNA are being developed as therapeutics. Here, we describe a simple computational workflow for identification of the regions on an RNA that are suitable for targeting with such AONs. The workflow is based on the statistical programming language R, and the calculations and data processing can be carried out on a desktop computer. Our workflow integrates well-established data resources and RNA structure-prediction tools and can be modified easily and expanded as new resources become available.


Assuntos
Biologia Computacional , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos/química , Oligonucleotídeos/genética , Software , Pareamento de Bases , Biologia Computacional/métodos , Humanos , Conformação de Ácido Nucleico , Polimorfismo Genético , Precursores de RNA/química , Precursores de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa