Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904627

RESUMO

As commercial geospatial intelligence data becomes more widely available, algorithms using artificial intelligence need to be created to analyze it. Maritime traffic is annually increasing in volume, and with it the number of anomalous events that might be of interest to law enforcement agencies, governments, and militaries. This work proposes a data fusion pipeline that uses a mixture of artificial intelligence and traditional algorithms to identify ships at sea and classify their behavior. A fusion process of visual spectrum satellite imagery and automatic identification system (AIS) data was used to identify ships. Further, this fused data was further integrated with additional information about the ship's environment to help classify each ship's behavior to a meaningful degree. This type of contextual information included things such as exclusive economic zone boundaries, locations of pipelines and undersea cables, and the local weather. Behaviors such as illegal fishing, trans-shipment, and spoofing are identified by the framework using freely or cheaply accessible data from places such as Google Earth, the United States Coast Guard, etc. The pipeline is the first of its kind to go beyond the typical ship identification process to help aid analysts in identifying tangible behaviors and reducing the human workload.

2.
Biochem Biophys Res Commun ; 521(3): 706-715, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699371

RESUMO

Each cell comprising an intact, healthy, confluent epithelial layer ordinarily remains sedentary, firmly adherent to and caged by its neighbors, and thus defines an elemental constituent of a solid-like cellular collective [1,2]. After malignant transformation, however, the cellular collective can become fluid-like and migratory, as evidenced by collective motions that arise in characteristic swirls, strands, ducts, sheets, or clusters [3,4]. To transition from a solid-like to a fluid-like phase and thereafter to migrate collectively, it has been recently argued that cells comprising the disordered but confluent epithelial collective can undergo changes of cell shape so as to overcome geometric constraints attributable to the newly discovered phenomenon of cell jamming and the associated unjamming transition (UJT) [1,2,5-9]. Relevance of the jamming concept to carcinoma cells lines of graded degrees of invasive potential has never been investigated, however. Using classical in vitro cultures of six breast cancer model systems, here we investigate structural and dynamical signatures of cell jamming, and the relationship between them [1,2,10,11]. In order of roughly increasing invasive potential as previously reported, model systems examined included MCF10A, MCF10A.Vector; MCF10A.14-3-3ζ; MCF10.ErbB2, MCF10AT; and MCF10CA1a [12-15]. Migratory speed depended on the particular cell line. Unsurprisingly, for example, the MCF10CA1a cell line exhibited much faster migratory speed relative to the others. But unexpectedly, across different cell lines higher speeds were associated with enhanced size of cooperative cell packs in a manner reminiscent of a peloton [9]. Nevertheless, within each of the cell lines evaluated, cell shape and shape variability from cell-to-cell conformed with predicted structural signatures of cell layer unjamming [1]. Moreover, both structure and migratory dynamics were compatible with previous theoretical descriptions of the cell jamming mechanism [2,10,11,16,17]. As such, these findings demonstrate the richness of the cell jamming mechanism, which is now seen to apply across these cancer cell lines but remains poorly understood.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Invasividade Neoplásica/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Forma Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Humanos
3.
Mol Biol Evol ; 35(10): 2390-2400, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29955873

RESUMO

Viral evolutionary pathways are determined by the fitness landscape, which maps viral genotype to fitness. However, a quantitative description of the landscape and the evolutionary forces on it remain elusive. Here, we apply a biophysical fitness model based on capsid folding stability and antibody binding affinity to predict the evolutionary pathway of norovirus escaping a neutralizing antibody. The model is validated by experimental evolution in bulk culture and in a drop-based microfluidics that propagates millions of independent small viral subpopulations. We demonstrate that along the axis of binding affinity, selection for escape variants and drift due to random mutations have the same direction, an atypical case in evolution. However, along folding stability, selection and drift are opposing forces whose balance is tuned by viral population size. Our results demonstrate that predictable epistatic tradeoffs between molecular traits of viral proteins shape viral evolution.


Assuntos
Afinidade de Anticorpos , Evolução Biológica , Aptidão Genética , Modelos Genéticos , Norovirus/genética , Animais , Anticorpos Neutralizantes , Proteínas do Capsídeo/fisiologia , Epistasia Genética , Camundongos , Dobramento de Proteína , Estabilidade Proteica , Seleção Genética
4.
Biophys J ; 114(6): 1490-1498, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590605

RESUMO

Bacterial biofilms are surface-attached microbial communities encased in self-produced extracellular polymeric substances. Here we demonstrate that during the development of Bacillus subtilis biofilms, matrix production is localized to an annular front propagating at the periphery and sporulation to a second front at a fixed distance at the interior. We show that within these fronts, cells switch off matrix production and transition to sporulation after a set time delay of ∼100 min. Correlation analyses of fluctuations in fluorescence reporter activity reveal that the fronts emerge from a pair of gene-expression waves of matrix production and sporulation. The localized expression waves travel across cells that are immobilized in the biofilm matrix in contrast to active cell migration or horizontal colony spreading. Our results suggest that front propagation arises via a local developmental program occurring at the level of individual bacterial cells, likely driven by nutrient depletion and metabolic by-product accumulation. A single-length scale and timescale couples the spatiotemporal propagation of both fronts throughout development. As a result, gene expression patterns within the advancing fronts collapse to self-similar expression profiles. Our findings highlight the key role of the localized cellular developmental program associated with the propagating front in describing biofilm growth.


Assuntos
Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Tempo
5.
Langmuir ; 32(21): 5350-5, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27192611

RESUMO

Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these polymersomes using double-emulsion drops with ultrathin shells as templates. The small thickness of the middle oil phase enables the attraction of the hydrophobic blocks of the polymers adsorbed at each of the oil/water interfaces of the double emulsions; this results in the dewetting of the oil from the surface of the innermost water drops of the double emulsions and the ultimate formation of the polymersome. This approach to polymersome fabrication enables control of the vesicle size and results in the efficient encapsulation of hydrophilic ingredients that can be released through the polymer membrane without membrane rupture. We apply our approach to the fabrication of Pluronic L121 vesicles and characterize the permeability of their membranes. Furthermore, we show that membrane permeability can be tuned by blending different Pluronic polymers. Our work thus describes a route to producing Pluronic vesicles that are useful for the controlled release of hydrophilic ingredients.

6.
Eur Phys J E Soft Matter ; 39(2): 23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26920526

RESUMO

We look at the drying process in a simple glass channel with dominant capillary effects as is the case in microfluidics. We find drying kinetics commonly observed for confined geometry, namely a constant period followed by a falling rate period. From visualization of the air/water interface with high resolution, we observe that the drying rate decreases without a drying front progression although this is the usually accepted mechanism for confined geometries. We show with FEM that in our specific geometry the falling rate period is due to changes in the shape of the air-water interface at the free surface where most evaporation occurs. Our simulations show that the sensitivity of the drying rate to the shape of the first air-water interface from the sample free surface implies that slight changes of the wetting or pinning conditions can significantly modify the drying rate.


Assuntos
Ar , Fenômenos Físicos , Água , Análise de Elementos Finitos , Cinética , Molhabilidade
7.
Appl Microbiol Biotechnol ; 100(10): 4607-15, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27003268

RESUMO

We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Imagem Óptica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Fluorescência , Concentração de Íons de Hidrogênio , Modelos Teóricos , Fenótipo
8.
Small ; 11(24): 2903-9, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-25693141

RESUMO

Prevention of undesired leakage of encapsulated materials prior to triggered release presents a technological challenge for the practical application of microcapsule technologies in agriculture, drug delivery, and cosmetics. A microfluidic approach is reported to fabricate perfluoropolyether (PFPE)-based microcapsules with a high core-shell ratio that show enhanced retention of encapsulated actives. For the PFPE capsules, less than 2% leakage of encapsulated model compounds, including Allura Red and CaCl2 , over a four week trial period is observed. In addition, PFPE capsules allow cargo diversity by the fabrication of capsules with either a water-in-oil emulsion or an organic solvent as core. Capsules with a toluene-based core begin a sustained release of hydrophobic model encapsulants immediately upon immersion in an organic continuous phase. The major contribution on the release kinetics stems from the toluene in the core. Furthermore, degradable silica particles are incorporated to confer porosity and functionality to the otherwise chemically inert PFPE-based polymer shell. These results demonstrate the capability of PFPE capsules with large core-shell ratios to retain diverse sets of cargo for extended periods and make them valuable for controlled release applications that require a low residual footprint of the shell material.

9.
Chembiochem ; 16(15): 2167-71, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26247541

RESUMO

Recombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high-throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact-free estimate of in vitro recombination rate between murine norovirus strains MNV-1 and WU20 co-infecting a cell (P(rec) = 3.3 × 10(-4) ± 2 × 10(-5) ) for a 1205 nt region. Our approach represents a time- and cost-effective improvement over current methods, and can be adapted for genomic studies requiring artifact- and bias-free selective amplification, such as microbial pathogens, or rare cancer cells.


Assuntos
Microfluídica/métodos , Recombinação Genética/genética , Análise de Sequência/métodos , Vírus/genética , Animais , Artefatos , Células Cultivadas , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Camundongos , Tamanho da Partícula , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação Viral/genética
10.
J Exp Biol ; 218(Pt 3): 440-50, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25524983

RESUMO

Squamates classified as 'subarenaceous' possess the ability to move long distances within dry sand; body elongation among sand and soil burrowers has been hypothesized to enhance subsurface performance. Using X-ray imaging, we performed the first kinematic investigation of the subsurface locomotion of the long, slender shovel-nosed snake (Chionactis occipitalis) and compared its biomechanics with those of the shorter, limbed sandfish lizard (Scincus scincus). The sandfish was previously shown to maximize swimming speed and minimize the mechanical cost of transport during burial. Our measurements revealed that the snake also swims through sand by propagating traveling waves down the body, head to tail. Unlike the sandfish, the snake nearly followed its own tracks, thus swimming in an approximate tube of self-fluidized granular media. We measured deviations from tube movement by introducing a parameter, the local slip angle, ßs, which measures the angle between the direction of movement of each segment and body orientation. The average ßs was smaller for the snake than for the sandfish; granular resistive force theory (RFT) revealed that the curvature utilized by each animal optimized its performance. The snake benefits from its slender body shape (and increased vertebral number), which allows propagation of a higher number of optimal curvature body undulations. The snake's low skin friction also increases performance. The agreement between experiment and RFT combined with the relatively simple properties of the granular 'frictional fluid' make subarenaceous swimming an attractive system to study functional morphology and bauplan evolution.


Assuntos
Lagartos/fisiologia , Serpentes/fisiologia , Animais , Fenômenos Biomecânicos , Fricção , Lagartos/anatomia & histologia , Locomoção , Pele/anatomia & histologia , Serpentes/anatomia & histologia , Solo , Coluna Vertebral/anatomia & histologia
11.
J Clin Psychopharmacol ; 33(6): 806-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24018547

RESUMO

In recent years, lithium has proved an effective augmentation strategy of antidepressants in both acute and treatment-resistant depression. Neuroprotective and procognitive effects of lithium have been evidenced. Brain-derived neurotrophic factor (BDNF) has been shown to play a key role in the pathophysiology of several neurological and psychiatric disorders. The BDNF hypothesis of depression postulates that a loss of BDNF is directly involved in the pathophysiology of depression, and its restoration may underlie the therapeutic efficacy of antidepressant treatments. Brain-derived neurotrophic factor serum concentrations were measured in a total of 83 acutely depressed patients before and after 4 weeks of lithium augmentation. A significant BDNF increase has been found during treatment (F2,81 = 5.04, P < 0.05). Brain-derived neurotrophic factor concentrations at baseline correlated negatively with relative Hamilton Depression Scale change after treatment with lithium (n = 83; r = -0.23; P < 0.05). This is the first study showing that lithium augmentation of an antidepressant strategy can increase BDNF serum concentrations. Our study replicates previous findings showing that serum BDNF levels in patients with depressive episodes increase during effective antidepressant treatment. Further studies are needed to separate specific effects of different antidepressants on BDNF concentration and address potential BDNF downstream mechanisms.


Assuntos
Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/sangue , Transtorno Depressivo Maior/tratamento farmacológico , Carbonato de Lítio/uso terapêutico , Doença Aguda , Adulto , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/sangue , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Quimioterapia Combinada , Feminino , Humanos , Carbonato de Lítio/administração & dosagem , Carbonato de Lítio/farmacologia , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Resultado do Tratamento
12.
iScience ; 24(11): 103252, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755092

RESUMO

It is well established that the early malignant tumor invades surrounding extracellular matrix (ECM) in a manner that depends upon material properties of constituent cells, surrounding ECM, and their interactions. Recent studies have established the capacity of the invading tumor spheroids to evolve into coexistent solid-like, fluid-like, and gas-like phases. Using breast cancer cell lines invading into engineered ECM, here we show that the spheroid interior develops spatial and temporal heterogeneities in material phase which, depending upon cell type and matrix density, ultimately result in a variety of phase separation patterns at the invasive front. Using a computational approach, we further show that these patterns are captured by a novel jamming phase diagram. We suggest that non-equilibrium phase separation based upon jamming and unjamming transitions may provide a unifying physical picture to describe cellular migratory dynamics within, and invasion from, a tumor.

13.
Nanoscale ; 12(45): 23282, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33179695

RESUMO

Correction for 'Direct growth of a porous substrate on high-quality graphene via in situ phase inversion of a polymeric solution' by Yanzhe Qin et al., Nanoscale, 2020, 12, 4953-4958, DOI: 10.1039/C9NR09693K.

14.
Nanoscale ; 12(8): 4953-4958, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32053130

RESUMO

The key for graphene applications is the successful transfer of graphene from a growth metal substrate to a substrate for application without compromising its high quality. However, state-of-the-art polymethyl methacrylate (PMMA) assisted transfer methods introduce wrinkles, folds and cracks, which are exacerbated for porous substrates. Here we report a novel in situ technique to transfer graphene onto a porous substrate which resolves these issues. Using phase-inversion a porous substrate is grown onto a graphene film with strong adhesion that perfectly matches graphene's topography, and the growth metal substrate is subsequently etched away. We achieve 63 cm2 high-quality single-layered graphene with almost 100% coverage over the pores of the substrate and pore ratios up to 35%. Our study resolves the three main challenges of transferring graphene to porous substrates, which are matching the topographies between the graphene and the porous substrate, achieving high pore ratios and minimizing the stresses on the suspended graphene; this approach may therefore serve as a general guide for attaching graphene or other 2D materials to scaffold structures.

15.
Front Cell Dev Biol ; 8: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117962

RESUMO

The healthy and mature epithelial layer is ordinarily quiescent, non-migratory, solid-like, and jammed. However, in a variety of circumstances the layer transitions to a phase that is dynamic, migratory, fluid-like and unjammed. This has been demonstrated in the developing embryo, the developing avian airway, the epithelial layer reconstituted in vitro from asthmatic donors, wounding, and exposure to mechanical stress. Here we examine the extent to which ionizing radiation might similarly provoke epithelial layer unjamming. We exposed primary human bronchial epithelial (HBE) cells maintained in air-liquid interface (ALI) to sub-therapeutic doses (1 Gy) of ionizing radiation (IR). We first assessed: (1) DNA damage by measuring p-H2AX, (2) the integrity of the epithelial layer by measuring transepithelial electrical resistance (TEER), and (3) the extent of epithelial cell differentiation by detecting markers of differentiated airway epithelial cells. As expected, IR exposure induced DNA damage but, surprisingly, disrupted neither normal differentiation nor the integrity of the epithelial cell layer. We then measured cell shape and cellular migration to determine the extent of the unjamming transition (UJT). IR caused cell shape elongation and increased cellular motility, both of which are hallmarks of the UJT as previously confirmed. To understand the mechanism of IR-induced UJT, we inhibited TGF-ß receptor activity, and found that migratory responses were attenuated. Together, these observations show that IR can provoke epithelial layer unjamming in a TGF-ß receptor-dependent manner.

16.
Sci Rep ; 10(1): 18302, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110128

RESUMO

In development of an embryo, healing of a wound, or progression of a carcinoma, a requisite event is collective epithelial cellular migration. For example, cells at the advancing front of a wound edge tend to migrate collectively, elongate substantially, and exert tractions more forcefully compared with cells many ranks behind. With regards to energy metabolism, striking spatial gradients have recently been reported in the wounded epithelium, as well as in the tumor, but within the wounded cell layer little is known about the link between mechanical events and underlying energy metabolism. Using the advancing confluent monolayer of MDCKII cells as a model system, here we report at single cell resolution the evolving spatiotemporal fields of cell migration speeds, cell shapes, and traction forces measured simultaneously with fields of multiple indices of cellular energy metabolism. Compared with the epithelial layer that is unwounded, which is non-migratory, solid-like and jammed, the leading edge of the advancing cell layer is shown to become progressively more migratory, fluid-like, and unjammed. In doing so the cytoplasmic redox ratio becomes progressively smaller, the NADH lifetime becomes progressively shorter, and the mitochondrial membrane potential and glucose uptake become progressively larger. These observations indicate that a metabolic shift toward glycolysis accompanies collective cellular migration but show, further, that this shift occurs throughout the cell layer, even in regions where associated changes in cell shapes, traction forces, and migration velocities have yet to penetrate. In characterizing the wound healing process these morphological, mechanical, and metabolic observations, taken on a cell-by-cell basis, comprise the most comprehensive set of biophysical data yet reported. Together, these data suggest the novel hypothesis that the unjammed phase evolved to accommodate fluid-like migratory dynamics during episodes of tissue wound healing, development, and plasticity, but is more energetically expensive compared with the jammed phase, which evolved to maintain a solid-like non-migratory state that is more energetically economical.


Assuntos
Metabolismo Energético , Epitélio/metabolismo , Glicólise , Animais , Movimento Celular , Cães , Glucose/metabolismo , Células Madin Darby de Rim Canino/metabolismo , Potencial da Membrana Mitocondrial , NAD/metabolismo , Oxirredução
17.
Nat Commun ; 11(1): 5053, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028821

RESUMO

The epithelial-to-mesenchymal transition (EMT) and the unjamming transition (UJT) each comprises a gateway to cellular migration, plasticity and remodeling, but the extent to which these core programs are distinct, overlapping, or identical has remained undefined. Here, we triggered partial EMT (pEMT) or UJT in differentiated primary human bronchial epithelial cells. After triggering UJT, cell-cell junctions, apico-basal polarity, and barrier function remain intact, cells elongate and align into cooperative migratory packs, and mesenchymal markers of EMT remain unapparent. After triggering pEMT these and other metrics of UJT versus pEMT diverge. A computational model attributes effects of pEMT mainly to diminished junctional tension but attributes those of UJT mainly to augmented cellular propulsion. Through the actions of UJT and pEMT working independently, sequentially, or interactively, those tissues that are subject to development, injury, or disease become endowed with rich mechanisms for cellular migration, plasticity, self-repair, and regeneration.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Regeneração , Mucosa Respiratória/fisiologia , Brônquios/citologia , Brônquios/fisiologia , Plasticidade Celular/fisiologia , Células Cultivadas , Humanos , Cultura Primária de Células , Mucosa Respiratória/citologia
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021504, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19792130

RESUMO

Aqueous foams continuously age due to fluid drainage and bubble coarsening, which makes it difficult to perform steady-state rheological measurements. Consequently we have developed the foam drainage rheology technique, where perfusion counteracts fluid drainage and bubble replenishment counteracts bubble coarsening during measurement of the shear stresses by a rheometer. We evaluate published power-law and Herschel-Bulkley models and find that parameters derived from emulsion experiments cannot describe our results. We propose a hybrid model, which combines our earlier film-shearing model, where the film thickness depends on liquid volume fraction, with a Herschel-Bulkley shear-rate dependence.

19.
Lab Chip ; 19(5): 749-756, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30672918

RESUMO

Asymmetric vesicles are membranes in which amphiphiles are asymmetrically distributed between each membrane leaflet. This asymmetry dictates chemical and physical properties of these vesicles, enabling their use as more realistic models of biological cell membranes, which also are asymmetric, and improves their potential for drug delivery and cosmetic applications. However, their fabrication is difficult as the self-assembly of amphiphiles always leads to symmetric vesicles. Here, we report the use of water-in-oil-in-oil-in-water triple emulsion drops to direct the assembly of the two leaflets to form asymmetric vesicles. Different compositions of amphiphiles are dissolved in each of the two oil shells of the triple emulsion; the amphiphiles diffuse to the interfaces and adsorb differentially at each of the two oil/water interfaces of the triple emulsion. These middle oil phases dewet from the innermost water cores of the triple emulsion drops, leading to the formation of membranes with degrees of asymmetry up to 70%. The triple emulsion drops are fabricated using capillary microfluidics, enabling production of highly monodisperse drops at rates as high as 300 Hz. Vesicles produced by this method can very efficiently encapsulate many different ingredients; this further enhances the utility of asymmetric vesicles as artificial cells, bioreactors and delivery vehicles.


Assuntos
Lipídeos/química , Células Artificiais/química , Membrana Celular/química , Emulsões/química , Óleos/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
20.
PLoS One ; 14(2): e0202065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30707705

RESUMO

Loss of function of the tumor suppressor p53 is known to increase the rate of migration of cells transiting the narrow pores of the traditional Boyden chamber assay. Here by contrast we investigate how p53 impacts the rate of cellular migration within a 2D confluent cell layer and a 3D collagen-embedded multicellular spheroid. We use two human carcinoma cell lines, the bladder carcinoma EJ and the colorectal carcinoma HCT116. In the confluent 2-D cell layer, for both EJ and HCT cells the migratory speeds and effective diffusion coefficients for the p53 null cells were significantly smaller than in p53-expressing cells. Compared to p53 expressers, p53-null cells exhibited more organized cortical actin rings together with reduced front-rear cell polarity. Furthermore, loss of p53 caused cells to exert smaller traction forces upon their substrates, and reduced formation of cryptic lamellipodia. In the 3D multicellular spheroid, loss of p53 consistently reduced collective cellular migration into surrounding collagen matrix. As regards the role of p53 in cellular migration, extrapolation from the Boyden chamber assay to other cellular microenvironments is seen to be fraught even in terms of the sign of the effect. Together, these paradoxical results show that the effects of p53 on cellular migration are context-dependent.


Assuntos
Movimento Celular/fisiologia , Neoplasias Colorretais/patologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Colágeno/metabolismo , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Esferoides Celulares , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa