Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602479

RESUMO

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.


Assuntos
Animais Recém-Nascidos , Diferenciação Celular , Pulmão , Miofibroblastos , Animais , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Camundongos , Pulmão/citologia , Pulmão/embriologia , Pulmão/metabolismo , Linhagem da Célula , Organogênese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
2.
Dev Dyn ; 253(2): 233-254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37688792

RESUMO

BACKGROUND: Latent TGFß binding protein-2 (LTBP2) is a fibrillin 1 binding component of the microfibril. LTBP2 is the only LTBP protein that does not bind any isoforms of TGFß, although it may interfere with the function of other LTBPs or interact with other signaling pathways. RESULTS: Here, we investigate mice lacking Ltbp2 (Ltbp2-/- ) and identify multiple phenotypes that impact bodyweight and fat mass, and affect bone and skin development. The alterations in skin and bone development are particularly noteworthy since the strength of these tissues is differentially affected by loss of Ltbp2. Interestingly, some tissues that express high levels of Ltbp2, such as the aorta and lung, do not have a developmental or homeostatic phenotype. CONCLUSIONS: Analysis of these mice show that LTBP2 has complex effects on development through direct effects on the extracellular matrix (ECM) or on signaling pathways that are known to regulate the ECM.


Assuntos
Proteínas de Transporte , Matriz Extracelular , Animais , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Matriz Extracelular/metabolismo , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Isoformas de Proteínas/metabolismo , Ligação Proteica
3.
J Immunol ; 208(6): 1467-1482, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35173037

RESUMO

Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.


Assuntos
Fatores Etários , Envelhecimento/fisiologia , Asma/imunologia , COVID-19/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Respirovirus/imunologia , SARS-CoV-2/fisiologia , Vírus Sendai/fisiologia , Células Th2/imunologia , Animais , Asma/epidemiologia , COVID-19/epidemiologia , Citocinas/metabolismo , Humanos , Influenza Humana/epidemiologia , Camundongos , Camundongos Endogâmicos C57BL , Estados Unidos/epidemiologia
4.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673071

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Assuntos
Biomarcadores/química , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Macrófagos/fisiologia , Monócitos/fisiologia , Receptores CCR2/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Molecular , Tomografia por Emissão de Pósitrons
5.
Am J Respir Cell Mol Biol ; 63(6): 739-747, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32804550

RESUMO

Single-cell RNA sequencing (scRNASeq) has advanced our understanding of lung biology, but its utility is limited by the need for fresh samples, loss of cell types by death or inadequate dissociation, and transcriptional stress responses induced during tissue digestion. Single-nucleus RNA sequencing (snRNASeq) has addressed these deficiencies in other tissues, but no protocol exists for lung tissue. We present a snRNASeq protocol and compare its results with those of scRNASeq. Two nuclear suspensions were prepared in lysis buffer on ice while one cell suspension was generated using enzymatic and mechanical dissociation. Cells and nuclei were processed using the 10× Genomics platform, and sequencing data were analyzed by Seurat. A total of 16,110 single-nucleus and 11,934 single-cell transcriptomes were generated. Gene detection rates were equivalent in snRNASeq and scRNASeq (∼1,700 genes and 3,000 unique molecular identifiers per cell) when mapping intronic and exonic reads. In the combined data, 89% of epithelial cells were identified by snRNASeq versus 22.2% of immune cells. snRNASeq transcriptomes are enriched for transcription factors and signaling proteins, with reduction in mitochondrial and stress-response genes. Both techniques improved mesenchymal cell detection over previous studies. Homeostatic signaling relationships among alveolar cell types were defined by receptor-ligand mapping using snRNASeq data, revealing interplay among epithelial, mesenchymal, and capillary endothelial cells. snRNASeq can be applied to archival murine lung samples, improves dissociation bias, eliminates artifactual gene expression, and provides similar gene detection compared with scRNASeq.


Assuntos
Transtornos Dissociativos/genética , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Animais , Núcleo Celular/metabolismo , Transtornos Dissociativos/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA/métodos
6.
J Biol Chem ; 288(35): 25626-25637, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23878198

RESUMO

Inflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids. Nitroalkenes react with Keap1 to instigate Nrf2 signaling, activate heat shock response gene expression, and inhibit NF-κB-mediated signaling, inducing net anti-inflammatory and tissue-protective metabolic responses. We report the purification and characterization of a NADPH-dependent liver enzyme that reduces the nitroalkene moiety of nitro-oleic acid, yielding the inactive product nitro-stearic acid. Prostaglandin reductase-1 (PtGR-1) was identified as a nitroalkene reductase by protein purification and proteomic studies. Kinetic measurements, inhibition studies, immunological and molecular biology approaches as well as clinical analyses confirmed this identification. Overexpression of PtGR-1 in HEK293T cells promoted nitroalkene metabolism to inactive nitroalkanes, an effect that abrogated the Nrf2-dependent induction of heme oxygenase-1 expression by nitro-oleic acid. These results situate PtGR-1 as a critical modulator of both the steady state levels and signaling activities of fatty acid nitroalkenes in vivo.


Assuntos
Oxirredutases do Álcool/metabolismo , Fígado/metabolismo , Nitrocompostos/metabolismo , Ácido Oleico/metabolismo , Transdução de Sinais/fisiologia , Ácidos Esteáricos/metabolismo , Oxirredutases do Álcool/genética , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleico/genética , Ratos
7.
JCI Insight ; 9(17)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042459

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.


Assuntos
Cílios , Glutationa , Humanos , Cílios/metabolismo , Cílios/patologia , Cílios/genética , Glutationa/metabolismo , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Epiteliais/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Proteômica , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica
8.
J Lipid Res ; 54(7): 1998-2009, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620137

RESUMO

The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl ß-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a K(D) of 7.5 × 10(-6) M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.


Assuntos
Ácidos Graxos/urina , Nitrocompostos/urina , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Voluntários Saudáveis , Humanos , Estrutura Molecular , Nitrocompostos/química , Nitrocompostos/metabolismo
9.
J Biol Chem ; 287(53): 44071-82, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23144452

RESUMO

The oxidation and nitration of unsaturated fatty acids by oxides of nitrogen yield electrophilic derivatives that can modulate protein function via post-translational protein modifications. The biological mechanisms accounting for fatty acid nitration and the specific structural characteristics of products remain to be defined. Herein, conjugated linoleic acid (CLA) is identified as the primary endogenous substrate for fatty acid nitration in vitro and in vivo, yielding up to 10(5) greater extent of nitration products as compared with bis-allylic linoleic acid. Multiple enzymatic and cellular mechanisms account for CLA nitration, including reactions catalyzed by mitochondria, activated macrophages, and gastric acidification. Nitroalkene derivatives of CLA and their metabolites are detected in the plasma of healthy humans and are increased in tissues undergoing episodes of ischemia reperfusion. Dietary CLA and nitrite supplementation in rodents elevates NO(2)-CLA levels in plasma, urine, and tissues, which in turn induces heme oxygenase-1 (HO-1) expression in the colonic epithelium. These results affirm that metabolic and inflammatory reactions yield electrophilic products that can modulate adaptive cell signaling mechanisms.


Assuntos
Ácidos Graxos/metabolismo , Ácido Linoleico/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais
10.
bioRxiv ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38234814

RESUMO

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single cell RNA sequencing, and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a myofibroblast differentiation program that is distinct form other mesenchymal cells types and increases the known repertoire of mesenchymal cell types in the neonatal lung.

11.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104040

RESUMO

DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.


Assuntos
Síndrome de Kartagener , Animais , Humanos , Síndrome de Kartagener/genética , Proteômica , Mutação , Fenótipo , Proteínas/genética , Dosagem de Genes
12.
Methods Enzymol ; 441: 161-72, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18554534

RESUMO

Recent advances in techniques that allow sensitive and specific measurement of S-nitrosothiols (RSNOs) have provided evidence for a role for these compounds in various aspects of nitric oxide (NO) biology. The most widely used approach is to couple reaction chemistry that selectively reduces RSNOs by one electron to produce NO, with the sensitive detection of the latter under anaerobic conditions using ozone based chemiluminescence in NO analyzers. Herein, we report a novel reaction that is readily adaptable for commercial NO analyzers that utilizes hydrogen sulfide (H2S), a gas that can reduce RSNO to NO and, analogous to NO, is produced by endogenous metabolism and has effects on diverse biological functions. We discuss factors that affect H2S based methods for RSNO measurement and discuss the potential of H2S as an experimental tool to measure RSNO.


Assuntos
Sulfeto de Hidrogênio , S-Nitrosotióis/análise , Animais , Humanos , S-Nitrosotióis/química
13.
Redox Biol ; 8: 1-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26722838

RESUMO

Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H(+) and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval.


Assuntos
Alcenos/metabolismo , Respiração Celular , Complexo II de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Nitrocompostos/metabolismo , Alcenos/farmacologia , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Linhagem Celular , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/farmacologia , Concentração de Íons de Hidrogênio , Masculino , Mioblastos Cardíacos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Nitrocompostos/farmacologia , Oxirredução , Ratos , Superóxidos/metabolismo
14.
Methods Enzymol ; 396: 553-68, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16291262

RESUMO

Results from vessel bioassays have provided the foundation for much of our understanding of the mechanisms that control vascular homeostasis and blood flow. The seminal observations that led to the discovery that nitric oxide (NO) is a critical mediator of vascular relaxation were made with the use of such methodology, and many studies have used NO-dependent vessel relaxation as an experimental readout for understanding mechanisms that regulate vascular NO function. Studies have coupled controlling oxygen tensions within vessel bioassay chambers to begin to understand how oxygen-specifically hypoxia-regulate NO function, and this context has identified red cells-specifically hemoglobin within-as critical modulators. Alone, vessel bioassays or measuring oxygen partial pressures (pO2) is relatively straightforward, but the combination necessitates consideration of several factors. We use the example of deoxygenated red cells/hemoglobin-dependent potentiation of nitrite-dependent dilation to illustrate the salient factors that are critical to consider in designing and interpreting experiments aimed at understanding the interplay between oxygen and NO function in the vasculature.


Assuntos
Óxido Nítrico/fisiologia , Oxigênio/metabolismo , Vasodilatação/fisiologia , Eritrócitos/metabolismo , Hemólise , Humanos , Pressão
15.
Ann N Y Acad Sci ; 1203: 45-52, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20716282

RESUMO

Reactive species derived from oxygen and nitric oxide are produced during inflammation and promote oxidation and nitration of biomolecules, including unsaturated fatty acids. Among the products of these reactions are alpha,beta-unsaturated carbonyl and nitro derivatives of fatty acids, electrophilic species whose reactivity with nucleophilic amino acids provides a means of posttranslational protein modification and signaling. These electrophilic fatty acids activate cytosolic and nuclear stress-response pathways (through Nrf2/Keap1 and PPARgamma, for example). There is also growing evidence that mitochondria generate electrophilic species. This appreciation, when combined with the role of mitochondrial dysfunction in conditions where exogenously delivered electrophiles exhibit therapeutic benefit, suggests that mitochondrial electrophile targets are also important in the resolution and prevention of inflammatory injury. Cardioprotective signaling pathways in particular appear to converge on mitochondria, with nitro-fatty acids recently shown to protect against cardiac ischemia/reperfusion injury in a murine model. Although numerous mitochondrial proteins are subject to modification by electrophiles, defining the targets most relevant to cytoprotection during inflammatory stress remains a clinically relevant goal.


Assuntos
Doenças Cardiovasculares/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Animais , Doenças Cardiovasculares/etiologia , Ácidos Graxos/metabolismo , Ácidos Graxos/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Oxirredução
16.
J Biol Chem ; 283(10): 6058-66, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18165226

RESUMO

Extracellular superoxide dismutase (EC-SOD) is expressed at high levels in lungs. EC-SOD has a polycationic matrix-binding domain that binds to polyanionic constituents in the matrix. Previous studies indicate that EC-SOD protects the lung in both bleomycin- and asbestos-induced models of pulmonary fibrosis. Although the mechanism of EC-SOD protection is not fully understood, these studies indicate that EC-SOD plays an important role in regulating inflammatory responses to pulmonary injury. Hyaluronan is a polyanionic high molecular mass polysaccharide found in the extracellular matrix that is sensitive to oxidant-mediated fragmentation. Recent studies found that elevated levels of low molecular mass hyaluronan are associated with inflammatory conditions. We hypothesize that EC-SOD may inhibit pulmonary inflammation in part by preventing superoxide-mediated fragmentation of hyaluronan to low molecular mass fragments. We found that EC-SOD directly binds to hyaluronan and significantly inhibits oxidant-induced degradation of this glycosaminoglycan. In vitro human polymorphic neutrophil chemotaxis studies indicate that oxidative fragmentation of hyaluronan results in polymorphic neutrophil chemotaxis and that EC-SOD can completely prevent this response. Intratracheal injection of crocidolite asbestos in mice leads to pulmonary inflammation and injury that is enhanced in EC-SOD knock-out mice. Notably, hyaluronan levels are increased in the bronchoalveolar lavage fluid after asbestos-induced pulmonary injury, and this response is markedly enhanced in EC-SOD knock-out mice. These data indicate that inhibition of oxidative hyaluronan fragmentation probably represents one mechanism by which EC-SOD inhibits inflammation in response to lung injury.


Assuntos
Bleomicina/toxicidade , Regulação Enzimológica da Expressão Gênica , Ácido Hialurônico/metabolismo , Pneumonia/enzimologia , Fibrose Pulmonar/enzimologia , Superóxido Dismutase/biossíntese , Animais , Antibióticos Antineoplásicos/toxicidade , Asbesto Crocidolita/toxicidade , Lavagem Broncoalveolar , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Pulmão/enzimologia , Pulmão/patologia , Lesão Pulmonar , Camundongos , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/patologia , Oxirredução/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Superóxido Dismutase/genética , Superóxidos/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 292(4): H1953-60, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17237242

RESUMO

Hydrogen sulfide (H(2)S) has recently been shown to have a signaling role in vascular cells. Similar to nitric oxide (NO), H(2)S is enzymatically produced by amino acid metabolism and can cause posttranslational modification of proteins, particularly at thiol residues. Molecular targets for H(2)S include ATP-sensitive K(+) channels, and H(2)S may interact with NO and heme proteins such as cyclooxygenase. It is well known that the reactions of NO in the vasculature are O(2) dependent, but this has not been addressed in most studies designed to elucidate the role of H(2)S in vascular function. This is important, since H(2)S reactions can be dramatically altered by the high concentrations of O(2) used in cell culture and organ bath experiments. To test the hypothesis that the effects of H(2)S on the vasculature are O(2) dependent, we have measured real-time levels of H(2)S and O(2) in respirometry and vessel tension experiments, as well as the associated vascular responses. A novel polarographic H(2)S sensor developed in our laboratory was used to measure H(2)S levels. Here we report that, in rat aorta, H(2)S concentrations that mediate rapid contraction at high O(2) levels cause rapid relaxation at lower physiological O(2) levels. At high O(2), the vasoconstrictive effect of H(2)S suggests that it may not be H(2)S per se but, rather, a putative vasoactive oxidation product that mediates constriction. These data are interpreted in terms of the potential for H(2)S to modulate vascular tone in vivo.


Assuntos
Aorta/metabolismo , Sulfeto de Hidrogênio/metabolismo , Consumo de Oxigênio/fisiologia , Vasodilatação/fisiologia , Animais , Aorta/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Feminino , Sulfeto de Hidrogênio/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa