Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897571

RESUMO

Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation. Here, we report that MafB deficiency impairs ß cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse ß cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced ß cell migration towards autonomic nerves and impaired ß cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Adulto , Animais , Humanos , Glucagon/genética , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Pâncreas/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo
2.
J Neurochem ; 165(3): 318-333, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36583243

RESUMO

Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Transtorno Autístico/genética , Antidepressivos/farmacologia , Hipocampo , Neurogênese/fisiologia , Modelos Animais de Doenças , Comportamento Social
3.
Proc Natl Acad Sci U S A ; 117(16): 9094-9100, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253308

RESUMO

Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto da Artéria Cerebral Média/terapia , Atividade Motora/fisiologia , Neurônios/transplante , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/etiologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Ratos , Recuperação de Função Fisiológica , Córtex Somatossensorial/citologia , Córtex Somatossensorial/patologia
4.
Dev Dyn ; 250(2): 191-236, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32940375

RESUMO

BACKGROUND: The neural crest is a transient embryonic stem cell population. Hypoxia inducible factor (HIF)-2α is associated with neural crest stem cell appearance and aggressiveness in tumors. However, little is known about its role in normal neural crest development. RESULTS: Here, we show that HIF-2α is expressed in trunk neural crest cells of human, murine, and avian embryos. Knockdown as well as overexpression of HIF-2α in vivo causes developmental delays, induces proliferation, and self-renewal capacity of neural crest cells while decreasing the proportion of neural crest cells that migrate ventrally to sympathoadrenal sites. Reflecting the in vivo phenotype, transcriptome changes after loss of HIF-2α reveal enrichment of genes associated with cancer, invasion, epithelial-to-mesenchymal transition, and growth arrest. CONCLUSIONS: Taken together, these results suggest that expression levels of HIF-2α must be strictly controlled during normal trunk neural crest development and that dysregulated levels affects several important features connected to stemness, migration, and development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Crista Neural/embriologia , Animais , Fator de Transcrição CDX2/metabolismo , Sistemas CRISPR-Cas , Embrião de Galinha , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Crista Neural/metabolismo , Fatores de Transcrição SOX9/metabolismo
5.
Brain ; 140(3): 692-706, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115364

RESUMO

Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex.


Assuntos
Lesões Encefálicas/cirurgia , Potenciais Somatossensoriais Evocados/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Sinapses/fisiologia , Potenciais de Ação , Vias Aferentes/fisiologia , Animais , Encéfalo/citologia , Encéfalo/ultraestrutura , Lesões Encefálicas/etiologia , Linhagem Celular Transformada , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Modelos Animais de Doenças , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Neurônios/fisiologia , Neurônios/ultraestrutura , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Nus , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Sinapses/ultraestrutura , Núcleos Ventrais do Tálamo/citologia
6.
J Neurosci ; 36(15): 4182-95, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076418

RESUMO

Stroke is a leading cause of disability and currently lacks effective therapy enabling long-term functional recovery. Ischemic brain injury causes local inflammation, which involves both activated resident microglia and infiltrating immune cells, including monocytes. Monocyte-derived macrophages (MDMs) exhibit a high degree of functional plasticity. Here, we determined the role of MDMs in long-term spontaneous functional recovery after middle cerebral artery occlusion in mice. Analyses by flow cytometry and immunocytochemistry revealed that monocytes home to the stroke-injured hemisphere., and that infiltration peaks 3 d after stroke. At day 7, half of the infiltrating MDMs exhibited a bias toward a proinflammatory phenotype and the other half toward an anti-inflammatory phenotype, but during the subsequent 2 weeks, MDMs with an anti-inflammatory phenotype dominated. Blocking monocyte recruitment using the anti-CCR2 antibody MC-21 during the first week after stroke abolished long-term behavioral recovery, as determined in corridor and staircase tests, and drastically decreased tissue expression of anti-inflammatory genes, including TGFß, CD163, and Ym1. Our results show that spontaneously recruited monocytes to the injured brain early after the insult contribute to long-term functional recovery after stroke. SIGNIFICANCE STATEMENT: For decades, any involvement of circulating immune cells in CNS repair was completely denied. Only over the past few years has involvement of monocyte-derived macrophages (MDMs) in CNS repair received appreciation. We show here, for the first time, that MDMs recruited to the injured brain early after ischemic stroke contribute to long-term spontaneous functional recovery through inflammation-resolving activity. Our data raise the possibility that inadequate recruitment of MDMs to the brain after stroke underlies the incomplete functional recovery seen in patients and that boosting homing of MDMs with an anti-inflammatory bias to the injured brain tissue may be a new therapeutic approach to promote long-term improvement after stroke.


Assuntos
Macrófagos , Monócitos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Animais , Anticorpos Bloqueadores/farmacologia , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/genética , Comportamento Animal/efeitos dos fármacos , Quimera , Lateralidade Funcional , Infarto da Artéria Cerebral Média/fisiopatologia , Inflamação/patologia , Lectinas/biossíntese , Lectinas/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/patologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Receptores CCR2/antagonistas & inibidores , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/patologia , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética , beta-N-Acetil-Hexosaminidases/biossíntese , beta-N-Acetil-Hexosaminidases/genética
7.
J Neuroinflammation ; 14(1): 153, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754163

RESUMO

BACKGROUND: Choroid plexus (CP) supports the entry of monocyte-derived macrophages (MDMs) to the central nervous system in animal models of traumatic brain injury, spinal cord injury, and Alzheimer's disease. Whether the CP is involved in the recruitment of MDMs to the injured brain after ischemic stroke is unknown. METHODS: Adult male C57BL/6 mice were subjected to focal cortical ischemia by permanent occlusion of the distal branch of the right middle cerebral artery. Choroid plexus tissues were collected and analyzed for Vcam1, Madcam1, Cx3cl1, Ccl2, Nt5e, and Ifnγ expression at different timepoints after stroke using qPCR. Changes of MDMs in CP and cerebrospinal fluid (CSF) at 1 day and 3 days after stroke were analyzed using flow cytometry. Infiltration of MDMs into CP and CSF were validated using ß-actin-GFP chimeric mice and Fgd5-CreERT2 x Lox-stop-lox-Tomato mice. CD115+ monocytes were isolated using a magnetic cell separation system from bone marrow of Cx3cr1-GFP or wild-type C57BL/6 donor mice. The freshly isolated monocytes or M2-like MDMs primed in vitro with IL4 and IL13 were stereotaxically injected into the lateral ventricle of stroke-affected mice to trace for their migration into ischemic hemisphere or to assess their effect on post-stroke recovery using open field, corridor, and active avoidance behavioral tests. RESULTS: We found that CP responded to cortical stroke by upregulation of gene expression for several possible mediators of MDM trafficking and, concomitantly, MDMs increased in CP and cerebrospinal fluid (CSF). We then confirmed that MDMs infiltrated from blood into CP and CSF after the insult using ß-actin-GFP chimeric mice and Fgd5-CreERT2 x Lox-stop-lox-Tomato mice. When MDMs were directly administered into CSF following stroke, they homed to the ischemic hemisphere. If they had been primed in vitro prior to their administration to become M2-like macrophages, they promoted post-stroke recovery of motor and cognitive function without influencing infarct volume. CONCLUSIONS: Our findings suggest the possibility that autologous transplantation of M2-like MDMs into CSF might be developed into a new strategy for promoting recovery also in patients with stroke.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/patologia , Macrófagos/patologia , Monócitos/patologia , Acidente Vascular Cerebral/patologia , Actinas/genética , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Monócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Proteína da Zônula de Oclusão-1/metabolismo
8.
Neurobiol Dis ; 83: 1-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26299391

RESUMO

Ischemic stroke triggers neurogenesis from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) and migration of newly formed neuroblasts toward the damaged striatum where they differentiate to mature neurons. Whether it is the injury per se or the associated inflammation that gives rise to this endogenous neurogenic response is unknown. Here we showed that inflammation without corresponding neuronal loss caused by intrastriatal lipopolysaccharide (LPS) injection leads to striatal neurogenesis in rats comparable to that after a 30 min middle cerebral artery occlusion, as characterized by striatal DCX+ neuroblast recruitment and mature NeuN+/BrdU+ neuron formation. Using global gene expression analysis, changes in several factors that could potentially regulate striatal neurogenesis were identified in microglia sorted from SVZ and striatum of LPS-injected and stroke-subjected rats. Among the upregulated factors, one chemokine, CXCL13, was found to promote neuroblast migration from neonatal mouse SVZ explants in vitro. However, neuroblast migration to the striatum was not affected in constitutive CXCL13 receptor CXCR5(-/-) mice subjected to stroke. Infarct volume and pro-inflammatory M1 microglia/macrophage density were increased in CXCR5(-/-) mice, suggesting that microglia-derived CXCL13, acting through CXCR5, might be involved in neuroprotection following stroke. Our findings raise the possibility that the inflammation accompanying an ischemic insult is the major inducer of striatal neurogenesis after stroke.


Assuntos
Corpo Estriado/fisiopatologia , Encefalite/fisiopatologia , Infarto da Artéria Cerebral Média/fisiopatologia , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Morte Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL13/farmacologia , Quimiocina CXCL13/fisiologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteína Duplacortina , Encefalite/induzido quimicamente , Encefalite/metabolismo , Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/fisiopatologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Receptores CXCR5/genética , Receptores CXCR5/fisiologia , Acidente Vascular Cerebral/patologia
9.
Brain ; 136(Pt 12): 3561-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24148272

RESUMO

Stem cell-based approaches to restore function after stroke through replacement of dead neurons require the generation of specific neuronal subtypes. Loss of neurons in the cerebral cortex is a major cause of stroke-induced neurological deficits in adult humans. Reprogramming of adult human somatic cells to induced pluripotent stem cells is a novel approach to produce patient-specific cells for autologous transplantation. Whether such cells can be converted to functional cortical neurons that survive and give rise to behavioural recovery after transplantation in the stroke-injured cerebral cortex is not known. We have generated progenitors in vitro, expressing specific cortical markers and giving rise to functional neurons, from long-term self-renewing neuroepithelial-like stem cells, produced from adult human fibroblast-derived induced pluripotent stem cells. At 2 months after transplantation into the stroke-damaged rat cortex, the cortically fated cells showed less proliferation and more efficient conversion to mature neurons with morphological and immunohistochemical characteristics of a cortical phenotype and higher axonal projection density as compared with non-fated cells. Pyramidal morphology and localization of the cells expressing the cortex-specific marker TBR1 in a certain layered pattern provided further evidence supporting the cortical phenotype of the fated, grafted cells, and electrophysiological recordings demonstrated their functionality. Both fated and non-fated cell-transplanted groups showed bilateral recovery of the impaired function in the stepping test compared with vehicle-injected animals. The behavioural improvement at this early time point was most likely not due to neuronal replacement and reconstruction of circuitry. At 5 months after stroke in immunocompromised rats, there was no tumour formation and the grafted cells exhibited electrophysiological properties of mature neurons with evidence of integration in host circuitry. Our findings show, for the first time, that human skin-derived induced pluripotent stem cells can be differentiated to cortical neuronal progenitors, which survive, differentiate to functional neurons and improve neurological outcome after intracortical implantation in a rat stroke model.


Assuntos
Córtex Cerebral/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Infarto da Artéria Cerebral Média/cirurgia , Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/transplante , Modelos Animais de Doenças , Estimulação Elétrica , Glutaminase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Infarto da Artéria Cerebral Média/patologia , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Nus , Ratos Sprague-Dawley
10.
Exp Cell Res ; 319(18): 2790-800, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24075965

RESUMO

Ependymal cells in the lateral ventricular wall are considered to be post-mitotic but can give rise to neuroblasts and astrocytes after stroke in adult mice due to insult-induced suppression of Notch signaling. The transcription factor FoxJ1, which has been used to characterize mouse ependymal cells, is also expressed by a subset of astrocytes. Cells expressing FoxJ1, which drives the expression of motile cilia, contribute to early postnatal neurogenesis in mouse olfactory bulb. The distribution and progeny of FoxJ1-expressing cells in rat forebrain are unknown. Here we show using immunohistochemistry that the overall majority of FoxJ1-expressing cells in the lateral ventricular wall of adult rats are ependymal cells with a minor population being astrocytes. To allow for long-term fate mapping of FoxJ1-derived cells, we used the piggyBac system for in vivo gene transfer with electroporation. Using this method, we found that FoxJ1-expressing cells, presumably the astrocytes, give rise to neuroblasts and mature neurons in the olfactory bulb both in intact and stroke-damaged brain of adult rats. No significant contribution of FoxJ1-derived cells to stroke-induced striatal neurogenesis was detected. These data indicate that in the adult rat brain, FoxJ1-expressing cells contribute to the formation of new neurons in the olfactory bulb but are not involved in the cellular repair after stroke.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Elementos de DNA Transponíveis/genética , Eletroporação , Fatores de Transcrição Forkhead/metabolismo , Neurogênese/fisiologia , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Animais , Diferenciação Celular , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Fatores de Transcrição Forkhead/genética , Imuno-Histoquímica , Masculino , Neurogênese/genética , Bulbo Olfatório/citologia , Ratos , Ratos Wistar
11.
PLoS One ; 19(10): e0300946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39475881

RESUMO

Aging profoundly affects the immune system leading to an increased propensity for inflammation. Age-related dysregulation of immune cells is implicated in the development and progression of numerous age-related diseases such as: cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Monocytes and monocyte-derived macrophages, being important players in the inflammatory response, significantly influence the aging process and the associated increase in inflammatory disease risk. Ischemic stroke is among age-related diseases where inflammation, particularly monocyte-derived macrophages, plays an important deteriorating role but could also strongly promote post-stroke recovery. Also, biological sex influences the incidence, presentation, and outcomes of ischemic stroke, reflecting both biological differences between men and women. Here, we studied whether human peripheral blood monocyte subtype (classical, intermediate, and non-classical) expression of genes implicated in stroke-related inflammation and post-stroke tissue regeneration depends on age and sex. A flow cytometry analysis of blood samples from 44 healthy volunteers (male and female, aged 28 to 98) showed that in contrast to other immune cells, the proportion of NK-cells increased in females. The proportion of B-cells decreased in both sexes with age. Gene expression analysis by qPCR identified several genes differentially correlating with age and sex within different monocyte subtypes. Interestingly, ANXA1 and CD36 showed a consistent increase with aging in all monocytes, specifically in intermediate (CD36) and intermediate and non-classical (ANXA1) subtypes. Other genes (IL-1ß, S100A8, TNFα, CD64, CD33, TGFß1, TLR8, CD91) were differentially changed in monocyte subtypes with increasing age. Most age-dependent gene changes were differentially expressed in female monocytes. Our data shed light on the nuanced interplay of age and sex in shaping the expression of inflammation- and regeneration-related genes within distinct monocyte subtypes. Understanding these dynamics could pave the way for targeted interventions and personalized approaches in post-stroke care, particularly for the aging population and individuals of different sexes.


Assuntos
Monócitos , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Monócitos/metabolismo , Monócitos/imunologia , Adulto , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/imunologia , Fatores Etários , Fatores Sexuais , Regeneração/genética , Inflamação/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Regulação da Expressão Gênica
12.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559207

RESUMO

Stroke is a leading cause of disability and the third cause of death. The immune system plays an essential role in post-stroke recovery. After an ischemic stroke, monocytes infiltrate the injured brain tissue and can exacerbate or mitigate the damage. Ischemic stroke is more prevalent in the aged population, and the aging brain exhibits an altered immune response. There are also sex disparities in ischemic stroke incidence, outcomes, and recovery, and these differences may be hormone-driven and determined by genetic and epigenetic factors. Here, we studied whether human peripheral blood monocyte subtype (classical, intermediate, and non-classical) expression of neuronal inflammation- and regeneration-related genes depends on age and sex. A FACS analysis of blood samples from 44 volunteers (male and female, aged 28 to 98) showed that in contrast to other immune cells, the proportion of natural killer cells increased in females. The proportion of B-cells decreased in both sexes with age, and subtypes of monocytes were not linked to age or sex. Gene expression analysis by qPCR identified several genes differentially correlating with age and sex within different monocyte subtypes. Interestingly, ANXA1 and CD36 showed a consistent increase with aging in all monocytes, specifically in intermediate (CD36) and intermediate and non-classical (ANXA1) subtypes. Other genes (IL-1ß, S100A8, TNFα, CD64, CD33, TGFß1, TLR8, CD91) were differentially changed in monocyte subtypes with increased aging. Most age-dependent gene changes were differentially expressed in female monocytes. Our data shed light on the nuanced interplay of age and sex in shaping the expression of inflammation- and regeneration-related genes within distinct monocyte subtypes. Understanding these dynamics could pave the way for targeted interventions and personalized approaches in post-stroke care, particularly for the aging population and individuals of different sexes.

13.
Nat Commun ; 15(1): 7534, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214989

RESUMO

The human silencing hub (HUSH) complex binds to transcripts of LINE-1 retrotransposons (L1s) and other genomic repeats, recruiting MORC2 and other effectors to remodel chromatin. How HUSH and MORC2 operate alongside DNA methylation, a central epigenetic regulator of repeat transcription, remains largely unknown. Here we interrogate this relationship in human neural progenitor cells (hNPCs), a somatic model of brain development that tolerates removal of DNA methyltransferase DNMT1. Upon loss of MORC2 or HUSH subunit TASOR in hNPCs, L1s remain silenced by robust promoter methylation. However, genome demethylation and activation of evolutionarily-young L1s attracts MORC2 binding, and simultaneous depletion of DNMT1 and MORC2 causes massive accumulation of L1 transcripts. We identify the same mechanistic hierarchy at pericentromeric α-satellites and clustered protocadherin genes, repetitive elements important for chromosome structure and neurodevelopment respectively. Our data delineate the epigenetic control of repeats in somatic cells, with implications for understanding the vital functions of HUSH-MORC2 in hypomethylated contexts throughout human development.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Elementos Nucleotídeos Longos e Dispersos , Células-Tronco Neurais , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Células-Tronco Neurais/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Epigênese Genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Inativação Gênica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas do Tecido Nervoso
14.
J Neurosci ; 32(15): 5151-64, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496561

RESUMO

Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk(-/-) mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células-Tronco Neurais/fisiologia , Acidente Vascular Cerebral/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antimetabólitos , Bromodesoxiuridina , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Eletroporação , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Recuperação de Função Fisiológica , Retroviridae/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/fisiologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/fisiologia , Fatores de Transcrição/metabolismo , Transfecção/métodos
16.
Neurobiol Dis ; 52: 191-203, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23276704

RESUMO

Neural stem/progenitor cells (NSPCs) in subventricular zone (SVZ) produce new striatal neurons during several months after stroke, which may contribute to recovery. Intracerebral grafts of NSPCs can exert beneficial effects after stroke through neuronal replacement, trophic actions, neuroprotection, and modulation of inflammation. Here we have explored whether human fetal striatum-derived NSPC-grafts influence striatal neurogenesis and promote recovery in stroke-damaged brain. T cell-deficient rats were subjected to 1h middle cerebral artery occlusion (MCAO). Human fetal NSPCs or vehicle were implanted into ipsilateral striatum 48 h after MCAO, animals were assessed behaviorally, and perfused at 6 or 14 weeks. Grafted human NSPCs survived in all rats, and a subpopulation had differentiated to neuroblasts or mature neurons at 6 and 14 weeks. Numbers of proliferating cells in SVZ and new migrating neuroblasts and mature neurons were higher, and numbers of activated microglia/macrophages were lower in the ischemic striatum of NSPC-grafted compared to vehicle-injected group both at 6 and 14 weeks. A fraction of grafted NSPCs projected axons from striatum to globus pallidus. The NSPC-grafted rats showed improved functional recovery in stepping and cylinder tests from 6 and 12 weeks, respectively. Our data show, for the first time, that intrastriatal implants of human fetal NSPCs exert a long-term enhancement of several steps of striatal neurogensis after stroke. The grafts also suppress striatal inflammation and ameliorate neurological deficits. Our findings support the idea that combination of NSPC transplantation and stimulation of neurogenesis from endogenous NSPCs may become a valuable strategy for functional restoration after stroke.


Assuntos
Infarto da Artéria Cerebral Média/cirurgia , Destreza Motora/fisiologia , Células-Tronco Neurais/transplante , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Movimento Celular/fisiologia , Corpo Estriado/fisiopatologia , Humanos , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Nus , Caminhada/fisiologia
17.
Stem Cells ; 30(12): 2657-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22961761

RESUMO

Transplantation of neural stem cells (NSCs) is a novel strategy to restore function in the diseased brain, acting through multiple mechanisms, for example, neuronal replacement, neuroprotection, and modulation of inflammation. Whether transplanted NSCs can operate by fusing with microglial cells or mature neurons is largely unknown. Here, we have studied the interaction of a mouse embryonic stem cell-derived neural stem (NS) cell line with rat and mouse microglia and neurons in vitro and in vivo. We show that NS cells spontaneously fuse with cocultured cortical neurons, and that this process requires the presence of microglia. Our in vitro data indicate that the NS cells can first fuse with microglia and then with neurons. The fused NS/microglial cells express markers and retain genetic and functional characteristics of both parental cell types, being able to respond to microglia-specific stimuli (LPS and IL-4/IL-13) and to differentiate to neurons and astrocytes. The NS cells fuse with microglia, at least partly, through interaction between phosphatidylserine exposed on the surface of NS cells and CD36 receptor on microglia. Transplantation of NS cells into rodent cortex results in fusion with mature pyramidal neurons, which often carry two nuclei, a process probably mediated by microglia. The fusogenic role of microglia could be even more important after NSC transplantation into brains affected by neurodegenerative diseases associated with microglia activation. It remains to be elucidated how the occurrence of the fused cells will influence the functional outcome after NSC transplantation in the diseased brain.


Assuntos
Células-Tronco Embrionárias/citologia , Microglia/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Animais , Diferenciação Celular/fisiologia , Fusão Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar
18.
Stem Cells ; 30(6): 1120-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22495829

RESUMO

Reprogramming of adult human somatic cells to induced pluripotent stem cells (iPSCs) is a novel approach to produce patient-specific cells for autologous transplantation. Whether such cells survive long-term, differentiate to functional neurons, and induce recovery in the stroke-injured brain are unclear. We have transplanted long-term self-renewing neuroepithelial-like stem cells, generated from adult human fibroblast-derived iPSCs, into the stroke-damaged mouse and rat striatum or cortex. Recovery of forepaw movements was observed already at 1 week after transplantation. Improvement was most likely not due to neuronal replacement but was associated with increased vascular endothelial growth factor levels, probably enhancing endogenous plasticity. Transplanted cells stopped proliferating, could survive without forming tumors for at least 4 months, and differentiated to morphologically mature neurons of different subtypes. Neurons in intrastriatal grafts sent axonal projections to the globus pallidus. Grafted cells exhibited electrophysiological properties of mature neurons and received synaptic input from host neurons. Our study provides the first evidence that transplantation of human iPSC-derived cells is a safe and efficient approach to promote recovery after stroke and can be used to supply the injured brain with new neurons for replacement.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Neurônios/citologia , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/cirurgia , Idoso , Animais , Encéfalo/citologia , Encéfalo/patologia , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Ratos
19.
Stem Cell Reports ; 18(1): 205-219, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563684

RESUMO

Models for human brain-oriented research are often established on primary cultures from rodents, which fails to recapitulate cellular specificity and molecular cues of the human brain. Here we investigated whether neuronal cultures derived from human induced pluripotent stem cells (hiPSCs) feature key advantages compared with rodent primary cultures. Using calcium fluorescence imaging, we tracked spontaneous neuronal activity in hiPSC-derived, human, and rat primary cultures and compared their dynamic and functional behavior as they matured. We observed that hiPSC-derived cultures progressively changed upon development, exhibiting gradually richer activity patterns and functional traits. By contrast, rat primary cultures were locked in the same dynamic state since activity onset. Human primary cultures exhibited features in between hiPSC-derived and rat primary cultures, although traits from the former predominated. Our study demonstrates that hiPSC-derived cultures are excellent models to investigate development in neuronal assemblies, a hallmark for applications that monitor alterations caused by damage or neurodegeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Ratos , Cálcio , Neurônios , Diferenciação Celular , Células Cultivadas
20.
Stem Cell Reports ; 18(8): 1643-1656, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236198

RESUMO

Neuronal loss and axonal demyelination underlie long-term functional impairments in patients affected by brain disorders such as ischemic stroke. Stem cell-based approaches reconstructing and remyelinating brain neural circuitry, leading to recovery, are highly warranted. Here, we demonstrate the in vitro and in vivo production of myelinating oligodendrocytes from a human induced pluripotent stem cell (iPSC)-derived long-term neuroepithelial stem (lt-NES) cell line, which also gives rise to neurons with the capacity to integrate into stroke-injured, adult rat cortical networks. Most importantly, the generated oligodendrocytes survive and form myelin-ensheathing human axons in the host tissue after grafting onto adult human cortical organotypic cultures. This lt-NES cell line is the first human stem cell source that, after intracerebral delivery, can repair both injured neural circuitries and demyelinated axons. Our findings provide supportive evidence for the potential future use of human iPSC-derived cell lines to promote effective clinical recovery following brain injuries.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Ratos , Adulto , Animais , Diferenciação Celular/fisiologia , Neurônios , Oligodendroglia/metabolismo , Axônios/fisiologia , Bainha de Mielina/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa