Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 19(15): 2755-2763, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987782

RESUMO

Water-insoluble DNA complexes are suitable for producing free-standing DNA films due to their low water sensitivity, which prevents their rapid degradation in aqueous environments. Here, we proposed two types of free-standing films that exhibit low dissolution rates in water: low molecular weight chitosan (LCS)-DNA films and phosphatidylcholine (PC)-cetyltrimethylammonium (CTMA)-DNA films. The structure and binding characteristics of the LCS-DNA and PC-CTMA-DNA complexes were investigated with UV-Vis spectroscopy and via the fluorescent characteristics of daunorubicin bound to them. A simple drop-casting method was then adopted for both complexes to fabricate free-standing films. An increase in antioxidant activity and water-resistance of the LCS-DNA DNA film was observed when the molar ratio of LCS to DNA was increased, but the dissolution rate of the LCS-DNA film was also dependent on the ionic strength of the dissolving solution. Fourteen days were required to dissolve the LCS-DNA film in deionized water, whereas immediate dissolution was observed in 1× phosphate-buffered saline (PBS). Deformation of the PC-CTMA-DNA film was accelerated by H2O2, such that the PC-CTMA-DNA film was degraded after 21 days of immersion in 1× PBS with H2O2. Due to the low dissolution rate in water and antioxidant activity, the free-standing LCS-DNA film should be able to store and protect embedded clinical materials, such as proteins and intercalating drugs, from moisture and enable localized delivery of treatments to designated sites. Also, the free-standing PC-CTMA-DNA film could be a biocompatible candidate for use as a membrane or sensor for detecting the levels of reactive oxygen species.


Assuntos
Quitosana , Água , Água/química , Antioxidantes , Peróxido de Hidrogênio , Quitosana/química , Cetrimônio , DNA/química
2.
Adv Mater ; : e2400124, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488277

RESUMO

A nano-biocomposite film with ultrahigh photoconductivity remains elusive and critical for bio-optoelectronic applications. A uniform, well-connected, high-concentration nanomaterial network in the biological matrix remains challenging to achieve high photoconductivity. Wafer-scale continuous nano-biocomposite film without surface deformations and cracks plays another major obstacle. Here ultrahigh photoconductivity is observed in deoxyribonucleic acid-molybdenum disulfide (DNA-MoS2) nano-biocomposite film by incorporating a high-concentration, well-percolated, and uniform MoS2 network in the ss-DNA matrix. This is achieved by utilizing DNA-MoS2 hydrogel formation, which results in crack-free, wafer-scale DNA-MoS2 nano-biocomposite films. Ultra-high photocurrent (5.5 mA at 1 V) with a record-high on/off ratio (1.3 × 106) is observed, five orders of magnitude higher than conventional biomaterials (≈101) reported so far. The incorporation of the Wely semimetal (Bismuth) as an electrical contact exhibits ultrahigh photoresponsivity (2.6 × 105 A W-1). Such high photoconductivity in DNA-MoS2 nano-biocomposite could bridge the gap between biology, electronics, and optics for innovative biomedicine, bioengineering, and neuroscience applications.

3.
PNAS Nexus ; 3(6): pgae213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881843

RESUMO

Intrinsic impediments, namely weak mechanical strength, low ionic conductivity, low electrochemical performance, and stability have largely inhibited beyond practical applications of hydrogels in electronic devices and remains as a significant challenge in the scientific world. Here, we report a biospecies-derived genomic DNA hybrid gel electrolyte with many synergistic effects, including robust mechanical properties (mechanical strength and elongation of 6.98 MPa and 997.42%, respectively) and ion migration channels, which consequently demonstrated high ionic conductivity (73.27 mS/cm) and superior electrochemical stability (1.64 V). Notably, when applied to a supercapacitor the hybrid gel-based devices exhibit a specific capacitance of 425 F/g. Furthermore, it maintained rapid charging/discharging with a capacitance retention rate of 93.8% after ∼200,000 cycles while exhibiting a maximum energy density of 35.07 Wh/kg and a maximum power density of 193.9 kW/kg. This represents the best value among the current supercapacitors and can be immediately applied to minicars, solar cells, and LED lightning. The widespread use of DNA gel electrolytes will revolutionize human efforts to industrialize high-performance green energy.

4.
ACS Biomater Sci Eng ; 9(2): 608-616, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36595627

RESUMO

Thanks to its remarkable properties of self-assembly and molecular recognition, DNA can be used in the construction of various dimensional nanostructures to serve as templates for decorating nanomaterials with nanometer-scale precision. Accordingly, this study discusses a design strategy for fabricating such multidimensional DNA nanostructures made of simple C-motifs. One-dimensional (1D) honeycomb-like tubes (1HTs) and two-dimensional (2D) honeycomb-like lattices (2HLs) were constructed using a C-motif with an arm length of 14 nucleotides (nt) at an angle of 240° along the counterclockwise direction. We designed and fabricated four different types of 1HTs and three different 2HLs. The study used atomic force microscopy to characterize the distinct topologies of the 1D and 2D DNA nanostructures (i.e., 1HTs and 2HLs, respectively). The width deviation of the 1HTs and height suppression percentage of the 2HLs were calculated and discussed. Our study can be provided to construct various dimensional DNA nanostructures easily with high efficiency.


Assuntos
Nanoestruturas , Conformação de Ácido Nucleico , Nanoestruturas/química , DNA/química , Microscopia de Força Atômica
5.
Colloids Surf B Biointerfaces ; 211: 112291, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34954515

RESUMO

The scaffolding of deoxyribonucleic acid (DNA) makes DNA molecules effective templates for hosting various types of nanomaterials. Recently, electrospun fibres formed by a variety of polymers have begun to see use in a number of applications, such as filtration in energy applications, insulation in thermodynamics and protein scaffolding in biomedicine. In this study, we constructed electrospun fibres and thin films made of DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA (CDNA) embedded with dyes, organic light-emitting materials (OLEMs), and gold nanorods (GNRs). These materials provide significant advantages, including selectivity of dimensionality, solubility in organic and inorganic solvents, and functionality enhancement. In addition, coaxial fibres made of CDNA were constructed to demonstrate the feasibility of constructing relatively complex fibres with an electrospinner. To determine the basic physical characteristics of the fibres and thin films containing GNRs and OLEMs, we conducted current measurements, photoluminescence (PL) measurements, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The currents in DNA and CDNA were found to exhibit Ohmic behaviour, while the PL emission could be controlled by OLEMs. In addition, the XPS provided the chemical configuration of samples, and the UV-Vis spectra revealed the plasmon resonance of GNR. Due to their simple fabrication and enhanced functionality, these DNA and CDNA fibres and thin films could be used in various devices (e.g., filters or blocking layers) and sensors (e.g., gas detectors and bio sensors) in a number of industries.


Assuntos
Ouro , Nanotubos , Cetrimônio , DNA/química , Ouro/química , Espectroscopia Fotoeletrônica
6.
ACS Appl Bio Mater ; 5(6): 2812-2818, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35543024

RESUMO

Recently, 3D printing has provided opportunities for designing complex structures with ease. These printed structures can serve as molds for complex materials such as DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA that have easily tunable functionalities via the embedding of various nanomaterials such as ions, nanoparticles, fluorophores, and proteins. Herein, we develop a simple and efficient method for constructing DNA flat and curved films containing water-soluble/thermochromatic dyes and di/trivalent ions and CTMA-modified DNA films embedded with organic light-emitting molecules (OLEM) with the aid of 2D/3D frames made by a 3D printer. We study the Raman spectra, current, and resistance of Cu2+-doped and Tb3+-doped DNA films and the photoluminescence of OLEM-embedded CTMA-modified DNA films to better understand the optoelectric characteristics of the samples. Compared to pristine DNA, ion-doped DNA films show noticeable variation of Raman peak intensities, which might be due to the interaction between the ion and phosphate backbone of DNA and the intercalation of ions in DNA base pairs. As expected, ion-doped DNA films show an increase of current with an increase in bias voltage. Because of the presence of metallic ions, DNA films with embedded ions showed relatively larger current than pristine DNA. The photoluminescent emission peaks of CTMA-modified DNA films with OLEMRed, OLEMGreen, and OLEMBlue were obtained at the wavelengths of 610, 515, and 469 nm, respectively. Finally, CIE color coordinates produced from CTMA-modified DNA films with different OLEM color types were plotted in color space. It may be feasible to produce multilayered DNA films as well. If so, multilayered DNA films embedded with different color dyes, ions, fluorescent materials, nanoparticles, proteins, and drug molecules could be used to realize multifunctional physical devices such as energy harvesting and chemo-bio sensors in the near future.


Assuntos
DNA , Nanoestruturas , Cetrimônio , Corantes , DNA/química , Íons , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa