Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nucleic Acids Res ; 43(3): 1456-68, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25578965

RESUMO

The RpoS/σ(S) sigma subunit of RNA polymerase (RNAP) activates transcription of stationary phase genes in many Gram-negative bacteria and controls adaptive functions, including stress resistance, biofilm formation and virulence. In this study, we address an important but poorly understood aspect of σ(S)-dependent control, that of a repressor. Negative regulation by σ(S) has been proposed to result largely from competition between σ(S) and other σ factors for binding to a limited amount of core RNAP (E). To assess whether σ(S) binding to E alone results in significant downregulation of gene expression by other σ factors, we characterized an rpoS mutant of Salmonella enterica serovar Typhimurium producing a σ(S) protein proficient for Eσ(S) complex formation but deficient in promoter DNA binding. Genome expression profiling and physiological assays revealed that this mutant was defective for negative regulation, indicating that gene repression by σ(S) requires its binding to DNA. Although the mechanisms of repression by σ(S) are likely specific to individual genes and environmental conditions, the study of transcription downregulation of the succinate dehydrogenase operon suggests that σ competition at the promoter DNA level plays an important role in gene repression by Eσ(S).


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Fator sigma/metabolismo , Regiões Promotoras Genéticas
2.
Nucleic Acids Res ; 42(14): 9209-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25034698

RESUMO

The Escherichia coli cAMP receptor protein (CRP) activates transcription initiation at many promoters by binding upstream of core promoter elements and interacting with the C-terminal domain of the RNA polymerase α subunit. Previous studies have shown stringent spacing is required for transcription activation by CRP. Here we report that this stringency can be altered by the nature of different promoter elements at target promoters. Several series of CRP-dependent promoters were constructed with CRP moved to different upstream locations, and their activities were measured. The results show that (i) a full UP element, located immediately downstream of the DNA site for CRP, relaxes the spacing requirements for activation and increases the recruitment of RNAP and open complex formation; (ii) the distal UP subsite plays the key role in this relaxation; (iii) modification of the extended -10 element also affects the spacing requirements for CRP-dependent activation. From these results, we conclude that the spacing requirements for CRP-dependent transcription activation vary according to the sequence of different promoter elements, and our results are important for understanding the organization of promoters in many different bacteria which are controlled by transcription factors that use activatory mechanisms similar to CRP.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ativação Transcricional , Sítios de Ligação , Escherichia coli/genética , Motivos de Nucleotídeos
3.
Mol Cell Proteomics ; 9(12): 2601-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20713450

RESUMO

The stationary phase sigma factor σ(S) (RpoS) controls a regulon required for general stress resistance of the closely related enterobacteria Salmonella and Escherichia coli. The σ(S)-dependent yncC gene encodes a putative DNA binding regulatory protein. Application of the surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) ProteinChip technology for proteome profiling of wild-type and mutant strains of Salmonella enterica serovar Typhimurium revealed potential protein targets for YncC regulation, which were identified by mass spectrometry, and subsequently validated. These proteins are encoded by the σ(S)-dependent operon yciGFEkatN and regulation of their expression by YncC operates at the transcriptional level, as demonstrated by gene fusion analyses and by in vitro transcription and DNase I footprinting experiments with purified YncC. The yciGFE genes are present (without katN) in E. coli K-12 but are poorly expressed, compared with the situation in Salmonella. We report that the yciGFE(katN) locus is silenced by the histone-like protein H-NS in both species, but that σ(S) efficiently relieves silencing in Salmonella but not in E. coli K-12. In Salmonella, YncC acts in concert with σ(S) to activate transcription at the yciG promoter (pyciG). When overproduced, YncC also activated σ(S)-dependent transcription at pyciG in E. coli K-12, but solely by countering the negative effect of H-NS. Our results indicate that differences between Salmonella and E. coli K-12, in the architecture of cis-acting regulatory sequences upstream of pyciG, contribute to the differential regulation of the yciGFE(katN) genes by H-NS and YncC in these two enterobacteria. In E. coli, this locus is subject to gene rearrangements and also likely to horizontal gene transfer, consistent with its repression by the xenogeneic silencer H-NS.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Proteínas de Fímbrias/fisiologia , Genes Bacterianos , Proteômica , Salmonella/genética , Fator sigma/genética , Fatores de Transcrição/fisiologia , Sequência de Bases , Western Blotting , Pegada de DNA , Primers do DNA , Regulação da Expressão Gênica no Desenvolvimento , Óperon , Regiões Promotoras Genéticas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transcrição Gênica
4.
Nucleic Acids Res ; 37(12): 3878-86, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19395594

RESUMO

Transcriptional activation of enhancer and sigma(54)-dependent promoters requires efficient interactions between enhancer-binding proteins (EBP) and promoter bound sigma(54)-RNA polymerase (E sigma(54)) achieved by DNA looping, which is usually facilitated by the integration host factor (IHF). Since the lengths of the intervening region supporting DNA-loop formation are similar among IHF-dependent and IHF-independent promoters, the precise reason(s) why IHF is selectively important for the frequency of transcription initiation remain unclear. Here, using kinetic cyclization and in vitro transcription assays we show that, in the absence of IHF protein, the DNA fragments containing an IHF-binding site have much less looping-formation ability than those that lack an IHF-binding site. Furthermore, when an IHF consensus-binding site was introduced into the intervening region between promoter and enhancer of the target DNA fragments, loop formation and DNA-loop-dependent transcriptional activation are significantly reduced in a position-independent manner. DNA-looping-independent transcriptional activation was unaffected. The binding of IHF to its consensus site in the target promoters clearly restored efficient DNA looping formation and looping-dependent transcriptional activation. Our data provide evidence that one function for the IHF protein is to release a communication block set by intrinsic properties of the IHF DNA-binding site.


Assuntos
DNA Bacteriano/química , Elementos Facilitadores Genéticos , Fatores Hospedeiros de Integração/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , Ciclização , DNA Bacteriano/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Transcrição Gênica
5.
J Bacteriol ; 192(4): 1075-87, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20008066

RESUMO

Proteins that bind sigma factors typically attenuate the function of the sigma factor by restricting its access to the RNA polymerase (RNAP) core enzyme. An exception to this general rule is the Crl protein that binds the stationary-phase sigma factor sigma(S) (RpoS) and enhances its affinity for the RNAP core enzyme, thereby increasing expression of sigma(S)-dependent genes. Analyses of sequenced bacterial genomes revealed that crl is less widespread and less conserved at the sequence level than rpoS. Seventeen residues are conserved in all members of the Crl family. Site-directed mutagenesis of the crl gene from Salmonella enterica serovar Typhimurium and complementation of a Deltacrl mutant of Salmonella indicated that substitution of the conserved residues Y22, F53, W56, and W82 decreased Crl activity. This conclusion was further confirmed by promoter binding and abortive transcription assays. We also used a bacterial two-hybrid system (BACTH) to show that the four substitutions in Crl abolish Crl-sigma(S) interaction and that residues 1 to 71 in sigma(S) are dispensable for Crl binding. In Escherichia coli, it has been reported that Crl also interacts with the ferric uptake regulator Fur and that Fur represses crl transcription. However, the Salmonella Crl and Fur proteins did not interact in the BACTH system. In addition, a fur mutation did not have any significant effect on the expression level of Crl in Salmonella. These results suggest that the relationship between Crl and Fur is different in Salmonella and E. coli.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mapeamento de Interação de Proteínas , Salmonella typhimurium/fisiologia , Fator sigma/genética , Fator sigma/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sítios de Ligação , DNA Bacteriano/metabolismo , Deleção de Genes , Teste de Complementação Genética , Peróxido de Hidrogênio/toxicidade , Viabilidade Microbiana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
6.
J Bacteriol ; 192(24): 6401-10, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935100

RESUMO

The RpoS sigma factor (σ(S)) is the master regulator of the bacterial response to a variety of stresses. Mutants in rpoS arise in bacterial populations in the absence of stress, probably as a consequence of a subtle balance between self-preservation and nutritional competence. We characterized here one natural rpoS mutant of Salmonella enterica serovar Typhi (Ty19). We show that the rpoS allele of Ty19 (rpoS(Ty19)) led to the synthesis of a σ(S)(Ty19) protein carrying a single glycine-to-valine substitution at position 282 in σ(S) domain 4, which was much more dependent than the wild-type σ(S) protein on activation by Crl, a chaperone-like protein that increases the affinity of σ(S) for the RNA polymerase core enzyme (E). We used the bacterial adenylate cyclase two-hybrid system to demonstrate that Crl bound to residues 72 to 167 of σ(S) domain 2 and that G282V substitution did not directly affect Crl binding. However, this substitution drastically reduced the ability of σ(S)(Ty19) to bind E in a surface plasmon resonance assay, a defect partially rescued by Crl. The modeled structure of the Eσ(S) holoenzyme suggested that substitution G282V could directly disrupt a favorable interaction between σ(S) and E. The rpoS(Ty19) allele conferred a competitive fitness when the bacterial population was wild type for crl but was outcompeted in Δcrl populations. Thus, these results indicate that the competitive advantage of the rpoS(Ty19) mutant is dependent on Crl and suggest that crl plays a role in the appearance of rpoS mutants in bacterial populations.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhi/genética , Salmonella typhi/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Alelos , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
7.
Methods Mol Biol ; 543: 369-87, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378177

RESUMO

Transcription factors interact at promoters to modulate the transcription of genes. This chapter describes three in vitro methods that can be used to monitor their activity: transcript assays, abortive initiation assays, and potassium permanganate footprinting. These techniques have been developed using bacterial systems, and can be used to study the kinetics of transcription initiation, and hence to unravel regulatory mechanisms.


Assuntos
Bioensaio/métodos , Fatores de Transcrição/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Pegada de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Plasmídeos/genética , Permanganato de Potássio , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Ativação Transcricional/genética
8.
Nucleic Acids Res ; 35(5): 1432-40, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17284458

RESUMO

In Escherichia coli, utilization of carbon sources is regulated by the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which modulates the intracellular levels of cAMP. The cAMP receptor protein (CRP) controls the transcription of many catabolic genes. The availability of nitrogen is sensed by the PII protein at the level of intracellular glutamine. Glutamine is transported mainly by GlnHPQ, and synthesized by glutamine synthetase (GS) encoded by glnA. Previous studies suggest that CRP affects nitrogen assimilation. Here we showed that at least two mechanisms are involved. First, CRP activates glnHp1 via synergistic binding with sigma 70 RNA polymerase (Esigma(70)) and represses glnHp2. As a consequence, in the presence of glutamine, the overall enhancement of glnHPQ expression alters GlnB signalling and de-activates glnAp2. Second, in vitro studies show that CRP can be recruited by sigma 54 holoenzyme (Esigma(54)) to a site centred at -51.5 upstream of glnAp2. CRP-induced DNA-bending prevents the nitrogen regulation protein C (NtrC) activator from approaching the activator-accessible face of the promoter-bound Esigma(54) closed complex, and inhibits glnAp2. Therefore, as the major transcriptional effector of the 'glucose effect', CRP affects both the signal transduction pathway and the overall geometry of the transcriptional machinery of components of the nitrogen regulon.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fatores de Transcrição/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Carbono/metabolismo , AMP Cíclico/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glutamato-Amônia Ligase/genética , Glutamina/metabolismo , Óperon , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Ativação Transcricional
9.
J Bacteriol ; 190(13): 4453-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18456810

RESUMO

The small regulatory protein Crl favors association of the stationary-phase sigma factor sigma(S) (RpoS) with the core enzyme polymerase and thereby increases sigma(S) activity. Crl has a major physiological impact at low levels of sigma(S). Here, we report that the Crl effects on sigma(S)-dependent gene expression, the H(2)O(2) resistance of Salmonella enterica serovar Typhimurium, and the resistance of this organism to acidic pH are greater at 28 degrees C than at 37 degrees C. Immunoblot experiments revealed a negative correlation between sigma(S) and Crl levels; the production of Crl was slightly greater at 28 degrees C than at 37 degrees C, whereas the sigma(S) levels were about twofold lower at 28 degrees C than at 37 degrees C. At both temperatures, Crl was present in excess of sigma(S), and increasing the Crl level further did not increase the H(2)O(2) resistance level of Salmonella and the expression of the sigma(S)-dependent gene katE encoding the stationary-phase catalase. In contrast, increasing the sigma(S) level rendered Salmonella more resistant to H(2)O(2) at 28 degrees C, increased the expression of katE, and reduced the magnitude of Crl activation. In addition, the effect of Crl on katE transcription in vitro was not dependent on temperature. These results suggest that the effect of temperature on Crl-dependent regulation of the katE gene and H(2)O(2) resistance are mediated mainly via an effect on sigma(S) levels. In addition, our results revealed that sigma(S) exerts a negative effect on the production of Crl in stationary phase when the cells contain high levels of sigma(S).


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Fator sigma/metabolismo , Temperatura , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Immunoblotting , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Fator sigma/genética , Transcrição Gênica/efeitos dos fármacos
10.
FEMS Microbiol Lett ; 261(1): 109-17, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16842367

RESUMO

CsgD is a master regulator of multicellular behaviour in Salmonella enterica serovar Typhimurium. Expression of CsgD is highly regulated on the transcriptional level. A nucleo-protein complex had been defined where the global regulators OmpR and integration host factor (IHF) bind up- and downstream of the csgD core promoter. In this study, the nucleo-protein complex of PcsgD was extended through characterization of additional OmpR and IHF binding sites that influence the transcriptional activity of the csgD promoter. Furthermore, the role of the 174 bp long 5'-untranslated region on transcriptional activity was defined.


Assuntos
Regiões 5' não Traduzidas/fisiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/fisiologia , Regiões Promotoras Genéticas , Salmonella typhimurium/genética , Transativadores/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sequência de Bases , Sítios de Ligação , Pegada de DNA , DNA Intergênico/metabolismo , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Salmonella typhimurium/metabolismo , Deleção de Sequência , Transativadores/metabolismo
11.
FEMS Microbiol Lett ; 257(1): 99-105, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16553838

RESUMO

A binding site for the Escherichia coli nucleoid binding protein FIS (factor for inversion stimulation) was identified upstream of a sigma54-dependent promoter, glnAp2. The binding and bending center of FIS is positioned at -55 with respect to the transcription start site (+1). Binding of FIS at this site activates the transcription of glnAp2 both in vivo and in vitro. Furthermore, we substituted the FIS-mediated DNA bending with other protein (cAMP receptor protein or integration host factor)-mediated DNA bending, without changing the position of the bending center. In vitro transcription assays indicated that all DNA bends centered at -55 activate transcriptional initiation of glnAp2, especially when linear templates were used.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Glutamato-Amônia Ligase/metabolismo , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Elementos Facilitadores Genéticos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Transcrição Gênica
12.
Nucleic Acids Res ; 32(1): 45-53, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14704342

RESUMO

The sigmas subunit of Escherichia coli RNA polymerase holoenzyme (EsigmaS) is a key factor of gene expression upon entry into stationary phase and in stressful conditions. The selectivity of promoter recognition by EsigmaS and the housekeeping Esigma70 is as yet not clearly understood. We used a genetic approach to investigate the interaction of sigmaS with its target promoters. Starting with down-promoter variants of a sigmaS promoter target, osmEp, altered in the -10 or -35 elements, we isolated mutant forms of sigmaS suppressing the promoter defects. The activity of these suppressors on variants of osmEp and ficp, another target of sigmaS, indicated that sigmaS is able to interact with the same key features within a promoter sequence as sigma70. Indeed, (i) sigmaS can recognize the -35 element of some but not all its target promoters, through interactions with its 4.2 region; and (ii) amino acids within the 2.4 region participate in the recognition of the -10 element. More specifically, residues Q152 and E155 contribute to the strong preference of sigmaS for a C in position -13 and residue R299 can interact with the -31 nucleotide in the -35 element of the target promoters.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Fator sigma/química , Fator sigma/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Fator sigma/genética , Supressão Genética/genética
13.
Nucleic Acids Res ; 31(22): 6598-609, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14602920

RESUMO

The HpaR-mediated regulation of the hpa-meta operon (Pg promoter) of the 4-hydroxyphenylacetic acid catabolic pathway of Escherichia coli has been studied. The HpaR regulator was purified to homogeneity showing that it is able to bind selectively to 4-hydroxyphenylacetic, 3-hydroxyphenylacetic and 3,4-dihydroxyphenylacetic acids, which act as inducers of the system. The role of HpaR as a repressor and the requirement for cAMP receptor protein for maximal activity have been confirmed by in vitro transcription analyses. Two DNA operators, OPR1 and OPR2, have been identified in the intergenic region located between the hpa-meta operon and the hpaR gene. The OPR1 operator contains a perfect palindromic sequence overlapping the transcriptional +1 start site of the Pg promoter. The OPR2 operator shows a similar but imperfect palindromic sequence and is located far downstream of the +1 start site of the Pr promoter. The binding of HpaR to OPR2 displays a clear cooperativity with OPR1 binding. Based on the above observations and the results of permanganate footprinting experiments, a repression mechanism for HpaR is postulated. A 3-dimensional model of HpaR, generated by comparison with the crystal structures of the homologous regulators, MarR and MexR, suggests that HpaR is a dimer that contains a typical winged-helix DNA binding motif in each subunit.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Óperon/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , DNA Intergênico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Fenilacetatos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Sítio de Iniciação de Transcrição , Transcrição Gênica/genética
14.
Structure ; 12(2): 269-75, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14962387

RESUMO

The E. coli RNA polymerase core enzyme is a multisubunit complex of 388,981 Da. To initiate transcription at promoters, the core enzyme associates with a sigma subunit to form holo RNA polymerase. Here we have used nanoflow electrospray mass spectrometry, coupled with tandem mass spectrometry, to probe the interaction of the RNA polymerase core enzyme with the most abundant sigma factor, sigma70. The results show remarkably well-resolved spectra for both the core and holo RNA polymerases. The regulator of sigma70, Rsd protein, has previously been identified as a protein that binds to free sigma70. We show that Rsd also interacts with core enzyme. In addition, by adding increasing amounts of Rsd, we show that sigma70 is displaced from holo RNA polymerase, resulting in complexes of Rsd with core and sigma70. The results argue for a model in which Rsd not only sequesters sigma70, but is also an effector of core RNA polymerase.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas por Ionização por Electrospray
15.
J Mol Biol ; 335(3): 685-92, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14687566

RESUMO

Escherichia coli Rsd protein was previously identified on the basis of its binding to the RNA polymerase sigma(70) subunit. The Rsd-sigma(70) complex has been studied using different methods. Our data show that Rsd associates with sigma(70) to form a complex with a stoichiometry of 1:1. Alanine scanning and deletion mutagenesis were used to locate regions of sigma(70) that are required for the formation of the Rsd-sigma(70) complex.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Fator sigma/química , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/metabolismo , Peso Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Repressoras/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Espectrometria de Massas por Ionização por Electrospray
16.
FEMS Microbiol Lett ; 301(1): 50-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19817868

RESUMO

The two chromosomally encoded beta-lactamases, OXA-22 and OXA-60, from Ralstonia pickettii are inducible by beta-lactam molecules. Disruption of RP3 abolished induction of both beta-lactamases and the resistance to pH, osmolarity and survival in the stationary phase, suggesting that RP3 might be a global regulator. Interactions between RP3, OXA-22 and OXA-60 were investigated at a transcript and protein level using 5'-rapid amplification of cDNA ends experiments, real-time reverse transcription (RT)-PCR and footprinting assays. The rp3 gene was actively transcribed and the promoter sequences corresponded to a nontypical sigma(70)-type promoter. RT-PCR analysis showed that rp3 expression as well as that of the bla(OXA) genes was positively regulated: the level of transcripts of rp3, bla(OXA-22) and bla(OXA-60) genes were, respectively, increased 20-, 100- and 2000-fold upon imipenem induction. DNAse I footprinting showed that RP3 specifically bound to tandem repeats centered at positions -55.5 and -73.5 upstream from the bla(OXA-22) and bla(OXA-60) transcriptional start sites. Interestingly, the binding site at bla(OXA-60) overlapped the -35 region of the rp3 promoter, although the region essential for induction lies at the beginning of the orf-rp3. This result indicates that RP3 is most probably only one component of a novel regulatory system involved in the expression of beta-lactamases in R. pickettii.


Assuntos
Ralstonia pickettii/metabolismo , Fatores de Transcrição/metabolismo , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Sequência de Bases , Fibrose Cística/complicações , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/etiologia , Infecções por Bactérias Gram-Negativas/metabolismo , Humanos , Imipenem/farmacologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ralstonia pickettii/efeitos dos fármacos , Ralstonia pickettii/genética , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Ativação Transcricional/efeitos dos fármacos , beta-Lactamases/genética
17.
J Biol Chem ; 283(48): 33455-64, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18818199

RESUMO

The small regulatory protein Crl binds to sigmaS, the RNA polymerase stationary phase sigma factor. Crl facilitates the formation of the sigmaS-associated holoenzyme (EsigmaS) and thereby activates sigmaS-dependent genes. Using a real time surface plasmon resonance biosensor, we characterized in greater detail the specificity and mode of action of Crl. Crl specifically forms a 1:1 complex with sigmaS, which results in an increase of the association rate of sigmaS to core RNA polymerase without any effect on the dissociation rate of EsigmaS. Crl is also able to associate with preformed EsigmaS with a higher affinity than with sigmaS alone. Furthermore, even at saturating sigmaS concentrations, Crl significantly increases EsigmaS association with the katN promoter and the productive isomerization of the EsigmaS-katN complex, supporting a direct role of Crl in transcription initiation. Finally, we show that Crl does not bind to sigma70 itself but is able at high concentrations to form a weak and transient 1:1 complex with both core RNA polymerase and the sigma70-associated holoenzyme, leaving open the possibility that Crl might also exert a side regulatory role in the transcriptional activity of additional non-sigmaS holoenzymes.


Assuntos
Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/química , Regiões Promotoras Genéticas/fisiologia , Salmonella enterica/química , Fator sigma/química , Fatores de Transcrição/química , Transcrição Gênica/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catalase/química , Catalase/genética , Catalase/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ligação Proteica/fisiologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Microbiology (Reading) ; 154(Pt 7): 2151-2160, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18599842

RESUMO

Expression from the Escherichia coli W meta-hpa operon promoter (Pg) is under a strict catabolic repression control mediated by the cAMP-catabolite repression protein (CRP) complex in a glucose-containing medium. The Pg promoter is also activated by the integration host factor (IHF) and repressed by the specific transcriptional regulator HpaR when 4-hydroxyphenylacetate (4HPA) is not present in the medium. Expression from the hpa promoter is also repressed in undefined rich medium such as LB, but the molecular basis of this mechanism is not understood. We present in vitro and in vivo studies to demonstrate the involvement of FIS protein in this catabolic repression. DNase I footprinting experiments show that FIS binds to multiple sites within the Pg promoter. FIS-site I overlaps the CRP-binding site. By using an electromobility shift assay, we demonstrated that FIS efficiently competes with CRP for binding to the Pg promoter, suggesting an antagonist/competitive mechanism. RT-PCR showed that the Pg repression effect is relieved in a FIS deleted strain. The repression role of FIS at Pg was further demonstrated by in vitro transcription assays. These results suggest that FIS contributes to silencing the Pg promoter in the exponential phase of growth in an undefined rich medium when FIS is predominantly expressed.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Proteínas Repressoras/metabolismo , Sequência de Bases , Sítios de Ligação , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Expressão Gênica , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transcrição Gênica
19.
J Bacteriol ; 189(8): 2976-87, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17293430

RESUMO

The small regulatory protein Crl activates sigma(S) (RpoS), the stationary-phase and general stress response sigma factor. Crl has been reported to bind sigma(S) in vitro and to facilitate the formation of RNA polymerase holoenzyme. In Salmonella enterica serovar Typhimurium, Crl is required for the development of the rdar morphotype and transcription initiation of the sigma(S)-dependent genes csgD and adrA, involved in curli and cellulose production. Here, we examined the expression of other sigma(S)-dependent phenotypes and genes in a Deltacrl mutant of Salmonella. Gene fusion analyses and in vitro transcription assays indicate that the magnitude of Crl activation differs between promoters and is highly dependent on sigma(S) levels. We replaced the wild-type rpoS allele in S. enterica serovar Typhimurium strain ATCC 14028 with the rpoS(LT2) allele that shows reduced expression of sigma(S); the result was an increased Crl activation ratio and larger physiological effects of Crl on oxidative, thermal, and acid stress resistance levels during stationary phase. We also found that crl, rpoS, and crl rpoS strains grew better on succinate than did the wild type and expressed the succinate dehydrogenase sdhCDBA operon more strongly. The crl and rpoS(LT2) mutations also increased the competitive fitness of Salmonella in stationary phase. These results show that Crl contributes to negative regulation by sigma(S), a finding consistent with a role for Crl in sigma factor competition via the facilitation of sigma(S) binding to core RNA polymerase.


Assuntos
Adesinas Bacterianas/fisiologia , Proteínas de Bactérias/fisiologia , Regiões Promotoras Genéticas/fisiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Fator sigma/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Óperon/genética , Salmonella typhimurium/química , Salmonella typhimurium/genética , Succinato Desidrogenase/genética , Virulência
20.
J Biol Chem ; 282(6): 3442-9, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17150963

RESUMO

The sigmaA factor of Bacteroides fragilis is the prototype of a novel subgroup of primary sigma factors that are essential for growth and ensure the initiation of transcription of the housekeeping genes. This subgroup is confined to the phyla Bacteroidetes and Chlorobi. Its members carry a specific amino acid signature and are notably characterized by a short, basic N-terminal segment instead of the typical acidic region 1.1. Using in vitro mutagenesis, we investigated the importance of this basic segment and of several residues of the signature for the function of sigmaA. We have shown that the conserved residues Phe-61 and Lys-265, located in the core binding and DNA binding subregions 2.1 and 4.2, respectively, are critical for full function of the B. fragilis holoenzyme. With respect to the unusual subregion composition of sigmaA, we have shown that truncation of the basic N-terminal segment, or reversion of its charge, strongly affects the overall transcriptional activity of B. fragilis RNA polymerase in vitro. Our results indicate that the presence of the intact basic segment is required for the formation of RNA polymerase (RNAP)-promoter open complexes, the correct architecture of the transcription bubble, and efficient promoter clearance.


Assuntos
Aminoácidos/química , Bacteroides fragilis/química , RNA Polimerases Dirigidas por DNA/química , Fragmentos de Peptídeos/química , Fator sigma/química , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/fisiologia , Bacteroides fragilis/genética , Bacteroides fragilis/fisiologia , Bacteroidetes/química , Bacteroidetes/genética , Bacteroidetes/fisiologia , Chlorobi/química , Chlorobi/genética , Chlorobi/fisiologia , Sequência Conservada/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/fisiologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Regiões Promotoras Genéticas , Fator sigma/genética , Fator sigma/fisiologia , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa