Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(23): 16157, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37278559

RESUMO

Correction for 'Helium nanodroplets as an efficient tool to investigate hydrogen attachment to alkali cations' by Siegfried Kollotzek et al., Phys. Chem. Chem. Phys., 2023, 25, 462-470, https://doi.org/10.1039/D2CP03841B.

2.
J Phys Chem A ; 127(27): 5723-5733, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37401904

RESUMO

The bimolecular gas-phase reactions of the phenylethynyl radical (C6H5CC, X2A1) with allene (H2CCCH2), allene-d4 (D2CCCD2), and methylacetylene (CH3CCH) were studied under single-collision conditions utilizing the crossed molecular beams technique and merged with electronic structure and statistical calculations. The phenylethynyl radical was found to add without an entrance barrier to the C1 carbon of the allene and methylacetylene reactants, resulting in doublet C11H9 collision complexes with lifetimes longer than their rotational periods. These intermediates underwent unimolecular decomposition via atomic hydrogen loss through tight exit transition states in facile radical addition─hydrogen atom elimination mechanisms forming predominantly 3,4-pentadien-1-yn-1-ylbenzene (C6H5CCCHCCH2) and 1-phenyl-1,3-pentadiyne (C6H5CCCCCH3) in overall exoergic reactions (-110 kJ mol-1 and -130 kJ mol-1) for the phenylethynyl-allene and phenylethynyl-methylacetylene systems, respectively. These barrierless reaction mechanisms mirror those of the ethynyl radical (C2H, X2Σ+) with allene and methylacetylene forming predominantly ethynylallene (HCCCHCCH2) and methyldiacetylene (HCCCCCH3), respectively, suggesting that in the aforementioned reactions the phenyl group acts as a spectator. These molecular mass growth processes are accessible in low-temperature environments such as cold molecular clouds (TMC-1) or Saturn's moon Titan, efficiently incorporating a benzene ring into unsaturated hydrocarbons.

3.
Phys Chem Chem Phys ; 24(8): 5138-5143, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156966

RESUMO

Quite a few molecules do not form stable anions that survive the time needed for their detection; their electron affinities (EA) are either very small or negative. How does one measure the EA if the anion cannot be observed? Or, at least, can one establish lower and upper bounds to their EA? We propose two approaches that provide lower and upper bounds. We choose the phenanthrene (Ph) molecule whose EA is controversial. Through competition between helium evaporation and electron detachment in HenPh- clusters, formed in helium nanodroplets, we estimate the lower bound of the vertical detachment energy (VDE) of Ph- as about -3 meV. In the second step, Ph is complexed with calcium whose electron affinity is just 24.55 meV. When CaPh- ions are collided with a thermal gas of argon, one observes Ca- product ions but no Ph-, suggesting that the EA of Ph is below that of Ca.

4.
Phys Chem Chem Phys ; 24(19): 11662-11667, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507430

RESUMO

It has been debated for years if the polycyclic aromatic hydrocarbon phenanthrene exists in its anionic form, or, in other words, if its electron affinity (EA) is positive or negative. In this contribution we confirm that the bare phenanthrene anion Ph- created in a binary collision with an electron at room temperature has a lifetime shorter than microseconds. However, the embedding of neutral phenanthrene molecules in negatively charged helium nanodroplets enables the formation of phenanthrene anions by charge transfer processes and the stabilization of the latter in the ultracold environment. Gentle shrinking of the helium matrix of phenanthrene-doped HNDs by collisions with helium gas makes the bare Ph- visible by high-resolution mass spectrometry. From these and previous measurements we conclude, that the EA of phenanthrene is positive and smaller than 24.55 meV.

5.
Phys Chem Chem Phys ; 25(1): 462-470, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477158

RESUMO

We report a novel method to reversibly attach and detach hydrogen molecules to positively charged sodium clusters formed inside a helium nanodroplet host matrix. It is based on the controlled production of multiply charged helium droplets which, after picking up sodium atoms and exposure to H2 vapor, lead to the formation of Nam+(H2)n clusters, whose population was accurately measured using a time-of-flight mass spectrometer. The mass spectra reveal particularly favorable Na+(H2)n and Na2+(H2)n clusters for specific "magic" numbers of attached hydrogen molecules. The energies and structures of these clusters have been investigated by means of quantum-mechanical calculations employing analytical interaction potentials based on ab initio electronic structure calculations. A good agreement is found between the experimental and the theoretical magic numbers.

6.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408968

RESUMO

Properties of clusters often depend critically on the exact number of atomic or molecular building blocks, however, most methods of cluster formation lead to a broad, size distribution and cluster intensity anomalies that are often designated as magic numbers. Here we present a novel approach of breeding size-selected clusters via pickup of dopants into multiply charged helium nanodroplets. The size and charge state of the initially undoped droplets and the vapor pressure of the dopant in the pickup region, determines the size of the dopant cluster ions that are extracted from the host droplets, via evaporation of the helium matrix in a collision cell filled with room temperature helium or via surface collisions. Size distributions of the selected dopant cluster ions are determined utilizing a high-resolution time of flight mass spectrometer. The comparison of the experimental data, with simulations taking into consideration the pickup probability into a shrinking He droplet due to evaporation during the pickup process, provides a simple explanation for the emergence of size distributions that are narrower than Poisson.


Assuntos
Hélio , Íons , Espectrometria de Massas
7.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956887

RESUMO

The adsorption of helium or hydrogen on cationic triphenylene (TPL, C18H12), a planar polycyclic aromatic hydrocarbon (PAH) molecule, and of helium on cationic 1,3,5-triphenylbenzene (TPB, C24H18), a propeller-shaped PAH, is studied by a combination of high-resolution mass spectrometry and classical and quantum computational methods. Mass spectra indicate that HenTPL+ complexes are particularly stable if n = 2 or 6, in good agreement with the quantum calculations that show that for these sizes, the helium atoms are strongly localized on either side of the central carbon ring for n = 2 and on either side of the three outer rings for n = 6. Theory suggests that He14TPL+ is also particularly stable, with the helium atoms strongly localized on either side of the central and outer rings plus the vacancies between the outer rings. For HenTPB+, the mass spectra hint at enhanced stability for n = 2, 4 and, possibly, 11. Here, the agreement with theory is less satisfactory, probably because TPB+ is a highly fluxional molecule. In the global energy minimum, the phenyl groups are rotated in the same direction, but when the zero-point harmonic correction is included, a structure with one phenyl group being rotated opposite to the other two becomes lower in energy. The energy barrier between the two isomers is very small, and TPB+ could be in a mixture of symmetric and antisymmetric states, or possibly even vibrationally delocalized.

8.
Phys Chem Chem Phys ; 23(13): 7777-7782, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33015698

RESUMO

Collisions of N+ and N2+ with C3 hydrocarbons, represented by a self assembled monolayer of propanethiol on a polcrystalline gold surface, were investigated by experiments over the incident energy range between 5 eV and 100 eV. For N+, formation of HCN+ is observed at incident energies of projectile ions as low as 20 eV. In the case of N2+ projectile ions, the yield of HCN+ increased above zero only at incident energies of about 50 eV. This collision energy in the laboratory frame corresponds to an activation energy of about 3 eV to 3.5 eV. In the case of N+ projectile ions, the yield of HCN+ was large for most of the incident energy range, but decreased to zero at incident energies below 20 eV. This may indicate a very small energy threshold for the surface reaction between N+ and C3 hydrocarbons of a few tenths of an eV. Such a threshold for the formation of HCN+ may exist also for collisions of N+ with an adsorbed mixture of hydrocarbon molecules.

9.
Phys Chem Chem Phys ; 22(48): 28165-28172, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33290453

RESUMO

We demonstrate a novel method to ionize molecules or molecular clusters by proton transfer at temperatures below 1 K. The method yields nascent ions and largely eliminates secondary reactions, even for notoriously 'delicate' molecules. Protonation is achieved inside liquid helium nanodroplets (HNDs) and begins with the formation of (H2)mH+ ions as the proton donors. In a separate and subsequent step the HNDs are doped with a proton acceptor molecule, X. Proton transfer occurs between X and the cold proton donor ions inside a helium droplet, an approach that avoids the large excess energy that is released if HNDs are first doped and then ionized. Mass spectra, recorded after stripping excess helium and hydrogen in a collision cell, show that this method offers a new way to determine proton affinities of molecules and clusters by proton-transfer bracketing, to investigate astrochemically relevant ion-molecule reactions at sub-kelvin temperatures, and to prepare XH+ ions that are suitable for messenger-tagging action spectroscopy.

10.
J Phys Chem A ; 124(41): 8439-8445, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931273

RESUMO

Independently of the preparation method, for cluster cations of aliphatic amino acids, the protonated form MnH+ is always the dominant species. This is a surprising fact considering that in the gas phase, they dissociate primarily by the loss of 45 Da, i.e., the loss of the carboxylic group. In the present study, we explore the dissociation dynamics of small valine cluster cations Mn+ and their protonated counterparts MnH+ via collision-induced dissociation experiments and ab initio calculations with the aim to elucidate the formation of MnH+-type cations from amino acid clusters. For the first time, we report the preparation of valine cluster cations Mn+ in laboratory conditions, using a technique of cluster ion assembly inside He droplets. We show that the Mn+ cations cooled down to He droplet temperature can dissociate to form both Mn-1H+ and [Mn-COOH]+ ions. With increasing internal energy, the Mn-1H+ formation channel becomes dominant. Mn-1H+ ions then fragment nearly exclusively by monomer loss, describing the high abundance of protonated clusters in the mass spectra of amino acid clusters.

11.
J Chem Phys ; 153(16): 164305, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138400

RESUMO

Neon cluster ions Nes + grown in pre-ionized, mass-to-charge selected helium nanodroplets (HNDs) reveal a strong enrichment of the heavy isotope 22Ne that depends on cluster size s and the experimental conditions. For small sizes, the enrichment is much larger than previously reported for bare neon clusters grown in nozzle expansions and subsequently ionized. The enrichment is traced to the massive evaporation of neon atoms in a collision cell that is used to strip helium from the HNDs. We derive a relation between the enrichment of 22Ne in the cluster ion and its corresponding depletion factor F in the vapor phase. The value thus found for F is in excellent agreement with a theoretical expression that relates isotopic fractionation in two-phase equilibria of atomic gases to the Debye temperature. Furthermore, the difference in zero-point energies between the two isotopes computed from F agrees reasonably well with theoretical studies of neon cluster ions that include nuclear quantum effects in the harmonic approximation. Another fitting parameter provides an estimate for the size si of the precursor of the observed Nes +. The value is in satisfactory agreement with the size estimated by modeling the growth of Nes + and with lower and upper limits deduced from other experimental data. On the other hand, neon clusters grown in neutral HNDs that are subsequently ionized by electron bombardment exhibit no statistically significant isotope enrichment at all. The finding suggests that the extent of ionization-induced dissociation of clusters embedded in HNDs is considerably smaller than that for bare clusters.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa