Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Metab ; 138(2): 107508, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709532

RESUMO

GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of ß-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Masculino , Feminino , Animais , Camundongos , Gangliosidose GM1/genética , Camundongos Knockout , beta-Galactosidase/genética , Doenças por Armazenamento dos Lisossomos/genética , Éxons
2.
Stroke ; 53(4): 1363-1372, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306836

RESUMO

BACKGROUND: Tissue hypoxia plays a critical role in the events leading to cell death in ischemic stroke. Despite promising results in preclinical and small clinical pilot studies, inhaled oxygen supplementation has not translated to improved outcomes in large clinical trials. Moreover, clinical observations suggest that indiscriminate oxygen supplementation can adversely affect outcome, highlighting the need to develop novel approaches to selectively deliver oxygen to affected regions. This study tested the hypothesis that intravenous delivery of a novel oxygen carrier (Omniox-Ischemic Stroke [OMX-IS]), which selectively releases oxygen into severely ischemic tissue, could delay infarct progression in an established canine thromboembolic large vessel occlusion stroke model that replicates key dynamics of human infarct evolution. METHODS: After endovascular placement of an autologous clot into the middle cerebral artery, animals received OMX-IS treatment or placebo 45 to 60 minutes after stroke onset. Perfusion-weighted magnetic resonance imaging was performed to define infarct progression dynamics to stratify animals into fast versus slow stroke evolvers. Serial diffusion-weighted magnetic resonance imaging was performed for up to 5 hours to quantify infarct evolution. Histology was performed postmortem to confirm final infarct size. RESULTS: In fast evolvers, OMX-IS therapy substantially slowed infarct progression (by ≈1 hour, P<0.0001) and reduced the final normalized infarct volume as compared to controls (0.99 versus 0.88, control versus OMX-IS drug, P<0.0001). Among slow evolvers, OMX-IS treatment delayed infarct progression by approximately 45 minutes; however, this did not reach statistical significance (P=0.09). The final normalized infarct volume also did not show a significant difference (0.93 versus 0.95, OMX-IS drug versus control, P=0.34). Postmortem histologically determined infarct volumes showed excellent concordance with the magnetic resonance imaging defined ischemic lesion volume (bias: 1.33% [95% CI, -15% to 18%). CONCLUSIONS: Intravenous delivery of a novel oxygen carrier is a promising approach to delay infarct progression after ischemic stroke, especially in treating patients with large vessel occlusion stroke who cannot undergo definitive reperfusion therapy within a timely fashion.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Cães , Humanos , Infarto , Imageamento por Ressonância Magnética/métodos , Oxigênio , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico
3.
J Neurointerv Surg ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527927

RESUMO

BACKGROUND: Intrasaccular flow-disrupting devices are a safe and effective treatment strategy for intracranial aneurysms. We utilized high-frequency optical coherence tomography (HF-OCT) and digital subtraction angiography (DSA) to evaluate SEAL Arc, a new intrasaccular device, and compare the findings with the well-established Woven EndoBridge (WEB) device in an animal model of saccular aneurysms. METHODS: In a rabbit model, elastase-induced aneurysms were treated with SEAL Arc (n=11) devices. HF-OCT and DSA were performed after implant and repeated after 12 weeks. Device protrusion and malapposition were assessed at implant time and scored on a binary system. Aneurysm occlusion was assessed at 12 weeks with the WEB Occlusion Scale and dichotomized to complete (A and B) or incomplete (C and D) occlusion. The percentage of neointimal coverage after 12 weeks was quantified using HF-OCT. We compared these data to previously published historical controls treated with the gold-standard WEB device (n=24) in the same model. RESULTS: Aneurysm size and device placement were not significantly different between the two groups. Complete occlusion was demonstrated in 80% of the SEAL Arc devices, which compared favorably to the 21% of the aneurysms treated with WEB devices (P=0.002). Neointimal coverage across SEAL Arc devices was 86±15% compared with 49±27% for WEB (P=0.001). Protruding devices had significantly less neointimal coverage (P<0.001) as did incompletely occluded aneurysms (P<0.001). Histologically, all aneurysms treated with SEAL Arc devices were completely healed. CONCLUSION: Complete early aneurysm occlusion was frequently observed in the SEAL Arc treated aneurysms, with significant neointimal coverage after 12 weeks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa